scispace - formally typeset
Search or ask a question
Author

Thomas Ragg

Bio: Thomas Ragg is an academic researcher from Karlsruhe Institute of Technology. The author has contributed to research in topics: Artificial neural network & Evolutionary algorithm. The author has an hindex of 12, co-authored 28 publications receiving 3251 citations. Previous affiliations of Thomas Ragg include University of Regensburg & Weingarten Realty Investors.

Papers
More filters
Journal ArticleDOI
TL;DR: The results show the importance of taking characteristics of several regions of the recorded electropherogram into account in order to get a robust and reliable prediction of RNA integrity, especially if compared to traditional methods.
Abstract: The integrity of RNA molecules is of paramount importance for experiments that try to reflect the snapshot of gene expression at the moment of RNA extraction. Until recently, there has been no reliable standard for estimating the integrity of RNA samples and the ratio of 28S:18S ribosomal RNA, the common measure for this purpose, has been shown to be inconsistent. The advent of microcapillary electrophoretic RNA separation provides the basis for an automated high-throughput approach, in order to estimate the integrity of RNA samples in an unambiguous way. A method is introduced that automatically selects features from signal measurements and constructs regression models based on a Bayesian learning technique. Feature spaces of different dimensionality are compared in the Bayesian framework, which allows selecting a final feature combination corresponding to models with high posterior probability. This approach is applied to a large collection of electrophoretic RNA measurements recorded with an Agilent 2100 bioanalyzer to extract an algorithm that describes RNA integrity. The resulting algorithm is a user-independent, automated and reliable procedure for standardization of RNA quality control that allows the calculation of an RNA integrity number (RIN). Our results show the importance of taking characteristics of several regions of the recorded electropherogram into account in order to get a robust and reliable prediction of RNA integrity, especially if compared to traditional methods.

2,406 citations

Journal ArticleDOI
TL;DR: It is suggested that in breast cancer, tumor cells may disseminate in a far less progressed genomic state than previously thought, and that they acquire genomic aberrations typical of metastatic cells thereafter.
Abstract: According to the present view, metastasis marks the end in a sequence of genomic changes underlying the progression of an epithelial cell to a lethal cancer. Here, we aimed to find out at what stage of tumor development transformed cells leave the primary tumor and whether a defined genotype corresponds to metastatic disease. To this end, we isolated single disseminated cancer cells from bone marrow of breast cancer patients and performed single-cell comparative genomic hybridization. We analyzed disseminated tumor cells from patients after curative resection of the primary tumor (stage M0), as presumptive progenitors of manifest metastasis, and from patients with manifest metastasis (stage M1). Their genomic data were compared with those from microdissected areas of matched primary tumors. Disseminated cells from M0-stage patients displayed significantly fewer chromosomal aberrations than primary tumors or cells from M1-stage patients (P < 0.008 and P < 0.0001, respectively), and their aberrations appeared to be randomly generated. In contrast, primary tumors and M1 cells harbored different and characteristic chromosomal imbalances. Moreover, applying machine-learning methods for the classification of the genotypes, we could correctly identify the presence or absence of metastatic disease in a patient on the basis of a single-cell genome. We suggest that in breast cancer, tumor cells may disseminate in a far less progressed genomic state than previously thought, and that they acquire genomic aberrations typical of metastatic cells thereafter. Thus, our data challenge the widely held view that the precursors of metastasis are derived from the most advanced clone within the primary tumor.

619 citations

Journal ArticleDOI
TL;DR: Patients with cytokeratin-positive cells in bone marrow before surgery may therefore benefit from adjuvant therapies, and the existence of perioperative stimuli that activate disseminated tumor cells is postulated.
Abstract: Purpose The outcome of prostate cancer is highly unpredictable. To assess the dynamics of systemic disease and to identify patients at high risk for early relapse we followed the fate of disseminated tumor cells in bone marrow for up to 10 years and genetically analyzed such cells isolated at various stages of disease. Patients and Methods Nine hundred bone marrow aspirates from 384 patients were stained using the monoclonal antibody A45-B/B3 directed against cytokeratins 8, 18, and 19. Log-rank statistics and Cox regression analysis were applied to determine the prognostic impact of positive cells detected before surgery (244 patients) and postoperatively (214 patients). Samples from primary tumors (n = 55) and single disseminated tumor cells (n = 100) were analyzed by comparative genomic hybridization. Results Detection of cytokeratin-positive cells before surgery was the strongest independent risk factor for metastasis within 48 months (P < .001; relative risk [RR], 5.5; 95% CI, 2.4 to 12.9). In contra...

159 citations

Journal ArticleDOI
TL;DR: A protocol for array comparative genomic hybridization (array CGH), which enables the detection of DNA copy number changes in single cells and may be used for the identification of novel therapy target genes.
Abstract: Only few selected cancer cells drive tumor progression and are responsible for therapy resistance. Their specific genomic characteristics, however, are largely unknown because high-resolution genome analysis is currently limited to DNA pooled from many cells. Here, we describe a protocol for array comparative genomic hybridization (array CGH), which enables the detection of DNA copy number changes in single cells. Combining a PCR-based whole genome amplification method with arrays of highly purified BAC clones we could accurately determine known chromosomal changes such as trisomy 21 in single leukocytes as well as complex genomic imbalances of single cell line cells. In single T47D cells aberrant regions as small as 1-2 Mb were identified in most cases when compared to non-amplified DNA from 10(6) cells. Most importantly, in single micrometastatic cancer cells isolated from bone marrow of breast cancer patients, we retrieved and confirmed amplifications as small as 4.4 and 5 Mb. Thus, high-resolution genome analysis of single metastatic precursor cells is now possible and may be used for the identification of novel therapy target genes.

62 citations

Journal ArticleDOI
TL;DR: The novel approach clearly outperforms both linear regression and the current standard methods in software engineering for estimating the defect content, such as capture-recapture, and is validated on a known empirical inspection data set.
Abstract: We view the problem of estimating the defect content of a document after an inspection as a machine learning problem: The goal is to learn from empirical data the relationship between certain observable features of an inspection (such as the total number of different defects detected) and the number of defects actually contained in the document. We show that some features can carry significant nonlinear information about the defect content. Therefore, we use a nonlinear regression technique, neural networks, to solve the learning problem. To select the best among all neural networks trained on a given data set, one usually reserves part of the data set for later cross-validation; in contrast, we use a technique which leaves the full data set for training. This is an advantage when the data set is small. We validate our approach on a known empirical inspection data set. For that benchmark, our novel approach clearly outperforms both linear regression and the current standard methods in software engineering for estimating the defect content, such as capture-recapture. The validation also shows that our machine learning approach can be successful even when the empirical inspection data set is small.

37 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Experimental data demonstrating the role of the microenvironment in metastasis is described, areas for future research are identified and possible new therapeutic avenues are suggested.
Abstract: Metastasis is a multistage process that requires cancer cells to escape from the primary tumour, survive in the circulation, seed at distant sites and grow. Each of these processes involves rate-limiting steps that are influenced by non-malignant cells of the tumour microenvironment. Many of these cells are derived from the bone marrow, particularly the myeloid lineage, and are recruited by cancer cells to enhance their survival, growth, invasion and dissemination. This Review describes experimental data demonstrating the role of the microenvironment in metastasis, identifies areas for future research and suggests possible new therapeutic avenues.

3,332 citations

Journal ArticleDOI
14 Oct 2011-Cell
TL;DR: The invasion-metastasis cascade is a multistep cell-biological process that involves dissemination of cancer cells to anatomically distant organ sites and their subsequent adaptation to foreign tissue microenvironments as mentioned in this paper.

3,150 citations

Journal ArticleDOI
Xin Yao1
01 Sep 1999
TL;DR: It is shown, through a considerably large literature review, that combinations between ANNs and EAs can lead to significantly better intelligent systems than relying on ANNs or EAs alone.
Abstract: Learning and evolution are two fundamental forms of adaptation. There has been a great interest in combining learning and evolution with artificial neural networks (ANNs) in recent years. This paper: 1) reviews different combinations between ANNs and evolutionary algorithms (EAs), including using EAs to evolve ANN connection weights, architectures, learning rules, and input features; 2) discusses different search operators which have been used in various EAs; and 3) points out possible future research directions. It is shown, through a considerably large literature review, that combinations between ANNs and EAs can lead to significantly better intelligent systems than relying on ANNs or EAs alone.

2,877 citations

Journal ArticleDOI
07 Apr 2011-Nature
TL;DR: It is shown that with flow-sorted nuclei, whole genome amplification and next generation sequencing the authors can accurately quantify genomic copy number within an individual nucleus and indicate that tumours grow by punctuated clonal expansions with few persistent intermediates.
Abstract: Genomic analysis provides insights into the role of copy number variation in disease, but most methods are not designed to resolve mixed populations of cells. In tumours, where genetic heterogeneity is common, very important information may be lost that would be useful for reconstructing evolutionary history. Here we show that with flow-sorted nuclei, whole genome amplification and next generation sequencing we can accurately quantify genomic copy number within an individual nucleus. We apply single-nucleus sequencing to investigate tumour population structure and evolution in two human breast cancer cases. Analysis of 100 single cells from a polygenomic tumour revealed three distinct clonal subpopulations that probably represent sequential clonal expansions. Additional analysis of 100 single cells from a monogenomic primary tumour and its liver metastasis indicated that a single clonal expansion formed the primary tumour and seeded the metastasis. In both primary tumours, we also identified an unexpectedly abundant subpopulation of genetically diverse 'pseudodiploid' cells that do not travel to the metastatic site. In contrast to gradual models of tumour progression, our data indicate that tumours grow by punctuated clonal expansions with few persistent intermediates.

2,426 citations

Journal ArticleDOI
TL;DR: The results show the importance of taking characteristics of several regions of the recorded electropherogram into account in order to get a robust and reliable prediction of RNA integrity, especially if compared to traditional methods.
Abstract: The integrity of RNA molecules is of paramount importance for experiments that try to reflect the snapshot of gene expression at the moment of RNA extraction. Until recently, there has been no reliable standard for estimating the integrity of RNA samples and the ratio of 28S:18S ribosomal RNA, the common measure for this purpose, has been shown to be inconsistent. The advent of microcapillary electrophoretic RNA separation provides the basis for an automated high-throughput approach, in order to estimate the integrity of RNA samples in an unambiguous way. A method is introduced that automatically selects features from signal measurements and constructs regression models based on a Bayesian learning technique. Feature spaces of different dimensionality are compared in the Bayesian framework, which allows selecting a final feature combination corresponding to models with high posterior probability. This approach is applied to a large collection of electrophoretic RNA measurements recorded with an Agilent 2100 bioanalyzer to extract an algorithm that describes RNA integrity. The resulting algorithm is a user-independent, automated and reliable procedure for standardization of RNA quality control that allows the calculation of an RNA integrity number (RIN). Our results show the importance of taking characteristics of several regions of the recorded electropherogram into account in order to get a robust and reliable prediction of RNA integrity, especially if compared to traditional methods.

2,406 citations