scispace - formally typeset
Search or ask a question
Author

Thomas S. Vedvick

Bio: Thomas S. Vedvick is an academic researcher from Salk Institute for Biological Studies. The author has contributed to research in topics: Pichia pastoris & Gene. The author has an hindex of 6, co-authored 11 publications receiving 1483 citations.
Topics: Pichia pastoris, Gene, DNA, Expression cassette, Yeast

Papers
More filters
Journal ArticleDOI
TL;DR: The Pichia pastoris heterologous gene expression system has been utilized to produce attractive levels of a variety of intracellular and extracellular proteins of interest and improvements in understanding and application have improved its utility even further.
Abstract: The Pichia pastoris heterologous gene expression system has been utilized to produce attractive levels of a variety of intracellular and extracellular proteins of interest. Recent advances in our understanding and application of the system have improved its utility even further. These advances include: (1) methods for the construction of P. pastoris strains with multiple copies of AOX1-promoter-driven expression cassettes; (2) mixed-feed culture strategies for high foreign protein volumetric productivity rates; (3) methods to reduce proteolysis of some products in high cell-density culture media; (4) tested procedures for purification of secreted products; and (5) detailed information on the structures of N-linked oligosaccharides on P. pastoris secreted proteins. In this review, these advances along with basic features of the P. pastoris system are described and discussed.

993 citations

Journal ArticleDOI
27 Apr 1990-Science
TL;DR: Affinity-purified, polyclonal antibodies to the gamma subunit of the dihydropyridine (DHP)-sensitive, voltage-dependent calcium channel have been used to isolate complementary DNAs to the rabbit skeletal muscle protein from an expression library, and the deduced primary structure indicates that it is a glycosylated hydrophobic protein.
Abstract: Affinity-purified, polyclonal antibodies to the gamma subunit of the dihydropyridine (DHP)-sensitive, voltage-dependent calcium channel have been used to isolate complementary DNAs to the rabbit skeletal muscle protein from an expression library. The deduced primary structure indicates that the gamma subunit is a 25,058-dalton protein that contains four transmembrane domains and two N-linked glycosylation sites, consistent with biochemical analyses showing that the gamma subunit is a glycosylated hydrophobic protein. Nucleic acid hybridization studies indicate that there is a 1200-nucleotide transcript in skeletal muscle but not in brain or heart. The gamma subunit may play a role in assembly, modulation, or the structure of the skeletal muscle calcium channel.

300 citations

Journal ArticleDOI
TL;DR: A synthetic gene encoding aprotinin (bovine pancreatic trypsin, inhibitor) was fused to the Saccharomyces cerevisiae prepro alpha mating factor leader sequence at the dibasic amino acid processing site, leading to the secretion of a biologically active aProtinin containing only a Glu-Ala N-terminal extension.
Abstract: A synthetic gene encoding aprotinin (bovine pancreatic trypsin, inhibitor) was fused to theSaccharomyces cerevisiae prepro alpha mating factor leader sequence at the dibasic amino acid processing sitePichia pastoris strains were developed to'express one or multiple copies of a methanol-inducible expression cassette containing the gene fusionP pastoris containing a single copy of the vector secreed approximately 150 mg/l of immunoreactive protein A construct bearing five copies of the expression cassette secreted 930 mg/l of aprotinin The purified aprotinin molecule was equipoten with the native molecule in a trypsin inhibition assay Protein sequence analysis showed that the alpha factor-aprotinin fusion was not processed at the basic amino acid residues Lys-Arg Instead, recombinant aprotinin had additional N-terminal amino acids derived from prepro alpha factor The N-terminal extension was variably 11 or 4 amino acids Inclusion of the spacer DNA sequence encoding Glu and Ala between aprotinin and the Lys-Arg processing site led to the secretion of a biologically active aprotinin containing only a Glu-Ala N-terminal extension

99 citations

Journal ArticleDOI
TL;DR: The use of the methylotrophic industrial yeast Pichia pastoris as a host system for the large scale production of the KPI domain of PN-2AβPP, a secreted isoform of the Alzheimer's amyloid β-protein precursor that contains the Kunitz-type protease inhibitor (KPI) domain, is described.

74 citations

Journal ArticleDOI
TL;DR: Improvements in strains have boosted the yield of proteins and peptides to the commercially feasible range and the Pichia pastoris expression system will soon be used to manufacture proteins for human clinical trials.

24 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The distinct structures and patterns of regulation of these three families of Ca(2+) channels provide a flexible array of Ca('s 2+) entry pathways in response to changes in membrane potential and a range of possibilities for regulation of Ca (2+) entry by second messenger pathways and interacting proteins.
Abstract: Voltage-gated Ca(2+) channels mediate Ca(2+) entry into cells in response to membrane depolarization. Electrophysiological studies reveal different Ca(2+) currents designated L-, N-, P-, Q-, R-, and T-type. The high-voltage-activated Ca(2+) channels that have been characterized biochemically are complexes of a pore-forming alpha1 subunit of approximately 190-250 kDa; a transmembrane, disulfide-linked complex of alpha2 and delta subunits; an intracellular beta subunit; and in some cases a transmembrane gamma subunit. Ten alpha1 subunits, four alpha2delta complexes, four beta subunits, and two gamma subunits are known. The Cav1 family of alpha1 subunits conduct L-type Ca(2+) currents, which initiate muscle contraction, endocrine secretion, and gene transcription, and are regulated primarily by second messenger-activated protein phosphorylation pathways. The Cav2 family of alpha1 subunits conduct N-type, P/Q-type, and R-type Ca(2+) currents, which initiate rapid synaptic transmission and are regulated primarily by direct interaction with G proteins and SNARE proteins and secondarily by protein phosphorylation. The Cav3 family of alpha1 subunits conduct T-type Ca(2+) currents, which are activated and inactivated more rapidly and at more negative membrane potentials than other Ca(2+) current types. The distinct structures and patterns of regulation of these three families of Ca(2+) channels provide a flexible array of Ca(2+) entry pathways in response to changes in membrane potential and a range of possibilities for regulation of Ca(2+) entry by second messenger pathways and interacting proteins.

2,330 citations

Journal ArticleDOI
TL;DR: This paper reviews the P. pastoris expression system: how it was developed, how it works, and what proteins have been produced and describes new promoters and auxotrophic marker/host strain combinations which extend the usefulness of the system.
Abstract: During the past 15 years, the methylotrophic yeast Pichia pastoris has developed into a highly successful system for the production of a variety of heterologous proteins. The increasing popularity of this particular expression system can be attributed to several factors, most importantly: (1) the simplicity of techniques needed for the molecular genetic manipulation of P. pastoris and their similarity to those of Saccharomyces cerevisiae, one of the most well-characterized experimental systems in modern biology; (2) the ability of P. pastoris to produce foreign proteins at high levels, either intracellularly or extracellularly; (3) the capability of performing many eukaryotic post-translational modifications, such as glycosylation, disulfide bond formation and proteolytic processing; and (4) the availability of the expression system as a commercially available kit. In this paper, we review the P. pastoris expression system: how it was developed, how it works, and what proteins have been produced. We also describe new promoters and auxotrophic marker/host strain combinations which extend the usefulness of the system.

2,048 citations

Journal ArticleDOI
20 Feb 1992-Nature
TL;DR: The hypothesis that the dramatic reduction in the 156K DAG in Duchenne muscular dystrophy leads to a loss of a linkage between the sarcolemma and extra-cellular matrix and that this may render muscle fibres more susceptible to necrosis is supported.
Abstract: The primary sequence of two components of the dystrophin–glycoprotein complex has been established by complementary DNA cloning. The transmembrane 43K and extracellular 156K dystrophin-associated glycoproteins (DAGs) are encoded by a single messenger RNA and the extracellular 156K DAG binds laminin. Thus, the 156K DAG is a new laminin-binding glycoprotein which may provide a linkage between the sarcolemma and extracellular matrix. These results support the hypothesis that the dramatic reduction in the 156K DAG in Duchenne muscular dystrophy leads to a loss of a linkage between the sarcolemma and extra-cellular matrix and that this may render muscle fibres more susceptible to necrosis.

1,375 citations

Journal ArticleDOI
TL;DR: The molecular relationships and physiological functions of these voltage-gated Ca(2+) channel proteins are presented and information on their molecular, genetic, physiological, and pharmacological properties is provided.
Abstract: Voltage-gated calcium (Ca(2+)) channels are key transducers of membrane potential changes into intracellular Ca(2+) transients that initiate many physiological events. There are ten members of the voltage-gated Ca(2+) channel family in mammals, and they serve distinct roles in cellular signal transduction. The Ca(V)1 subfamily initiates contraction, secretion, regulation of gene expression, integration of synaptic input in neurons, and synaptic transmission at ribbon synapses in specialized sensory cells. The Ca(V)2 subfamily is primarily responsible for initiation of synaptic transmission at fast synapses. The Ca(V)3 subfamily is important for repetitive firing of action potentials in rhythmically firing cells such as cardiac myocytes and thalamic neurons. This article presents the molecular relationships and physiological functions of these Ca(2+) channel proteins and provides information on their molecular, genetic, physiological, and pharmacological properties.

1,295 citations

Journal ArticleDOI
01 Mar 2005-Yeast
TL;DR: The Pichia pastoris expression system is being used successfully for the production of various recombinant heterologous proteins and the importance of optimizing the physicochemical environment for efficient and maximal recombinant protein production in bioreactors and the role of process control in optimizing protein production is reviewed.
Abstract: The Pichia pastoris expression system is being used successfully for the production of various recombinant heterologous proteins. Recent developments with respect to the Pichia expression system have had an impact on not only the expression levels that can be achieved, but also the bioactivity of various heterologous proteins. We review here some of these recent developments, as well as strategies for reducing proteolytic degradation of the expressed recombinant protein at cultivation, cellular and protein levels. The problems associated with post-translational modifications performed on recombinant proteins by P. pastoris are discussed, including the effects on bioactivity and function of these proteins, and some engineering strategies for minimizing unwanted glycosylations. We pay particular attention to the importance of optimizing the physicochemical environment for efficient and maximal recombinant protein production in bioreactors and the role of process control in optimizing protein production is reviewed. Finally, future aspects of the use of the P. pastoris expression system are discussed with regard to the production of complex membrane proteins, such as G protein-coupled receptors, and the industrial and clinical importance of these proteins.

1,237 citations