scispace - formally typeset
Search or ask a question
Author

Thomas Steinger

Bio: Thomas Steinger is an academic researcher from University of Fribourg. The author has contributed to research in topics: Population & Bromus erectus. The author has an hindex of 22, co-authored 29 publications receiving 2799 citations. Previous affiliations of Thomas Steinger include École Polytechnique Fédérale de Lausanne & ETH Zurich.

Papers
More filters
Journal ArticleDOI
TL;DR: The results reveal a mechanism by which plants determine the composition of rhizosphere microbiota, plant performance and plant-herbivore interactions of the next generation by modifying root-associated microbiota.
Abstract: By changing soil properties, plants can modify their growth environment. Although the soil microbiota is known to play a key role in the resulting plant-soil feedbacks, the proximal mechanisms underlying this phenomenon remain unknown. We found that benzoxazinoids, a class of defensive secondary metabolites that are released by roots of cereals such as wheat and maize, alter root-associated fungal and bacterial communities, decrease plant growth, increase jasmonate signaling and plant defenses, and suppress herbivore performance in the next plant generation. Complementation experiments demonstrate that the benzoxazinoid breakdown product 6-methoxy-benzoxazolin-2-one (MBOA), which accumulates in the soil during the conditioning phase, is both sufficient and necessary to trigger the observed phenotypic changes. Sterilization, fungal and bacterial profiling and complementation experiments reveal that MBOA acts indirectly by altering root-associated microbiota. Our results reveal a mechanism by which plants determine the composition of rhizosphere microbiota, plant performance and plant-herbivore interactions of the next generation.

716 citations

Journal ArticleDOI
TL;DR: It is argued that evolutionary change during invasions will also affect plant-antagonist interactions and, thus, will have important implications for biological control programmes targeted at invasive plants.
Abstract: Evidence is increasing that invasive plants can undergo rapid adaptive evolution during the process of range expansion. Here, we argue that evolutionary change during invasions will also affect plant-antagonist interactions and, thus, will have important implications for biological control programmes targeted at invasive plants. We explore how altered selection in the new range might influence the evolution of plant defence (resistance and tolerance) and life history. The degree to which such evolutionary processes might affect biological control efficacy is largely unexplored. We hope that, by testing the hypotheses that we propose here, a closer link can be established between biological control and evolutionary biology, to the benefit of both disciplines.

574 citations

Journal ArticleDOI
TL;DR: The results suggest caution with plant migration scenarios based on shifting isotherms where late-successional clonal species, which dominate the alpine vegetation all over the world, are concerned.
Abstract: Carex curvula is a very slow-growing rhizomatous sedge that forms extensive stands in the European an alpine belt. The recruitment of sexual progeny is extremely rare and propagation occurs predominantly through clonal growth. The randomly amplified polymorphic DNA (RAPD) technique was used to analyse clonal structure in a small patch (2.0x0.4 m sampling transect plus some additional samples) of a high-alpine population of the species. Amplification of the DNA of 116 tiller samples from the patch with eight ten-base primers yielded a total of 95 bands, of which 73 were polymorphic. Based on the RAPD amplification profiles a total of 15 multilocus genotypes (putative clones) were identified. Due to the high number of polymorphic loci the number of genetic markers delineating individual clones was high (range: 16–39 markers) which suggests that our estimates of clonal diversity are precise. More than half of the sampled tillers were identified as belonging to a single clone which formed a relatively homogeneous disc intermingling with other clones only at its margin. Based on the maximum diameter of this large clone of more than 7000 tillers and estimates of annual expansion growth of rhizomes (0.4 mm year-1), the age of the clone was calculated to be around 2000 years. This demonstrates that clones of C. curvula may persist on a single spot over long periods with quite diverse alpine climates ranging from rather mild periods in the Middle Ages to cool periods during the so called “little ice age” in the last century. Our results suggest caution with plant migration scenarios based on shifting isotherms where late-successional clonal species, which dominate the alpine vegetation all over the world, are concerned.

203 citations

Journal ArticleDOI
01 May 2009-Ecology
TL;DR: This study suggests that the invasive success of C. maculosa is partly due to preadaptation of the tetraploid cytotype in Europe to drier climate and possibly further adaptation to these conditions in the introduced range and the potential for earlier and longer seed production associated with the polycarpic life cycle constitutes an additional factor that may have led to the dominance of tetra ploidy over diploids in the introduce range.
Abstract: Polyploidy is often assumed to increase the spread and thus the success of alien plant species, but few empirical studies exist. We tested this hypothesis with Centaurea maculosa Lam., a species native to Europe and introduced into North America approximately 120 years ago where it became highly invasive. We analyzed the ploidy level of more than 2000 plants from 93 native and 48 invasive C. maculosa populations and found a pronounced shift in the relative frequency of diploid and tetraploid cytotypes. In Europe diploid populations occur in higher frequencies than tetraploids and only four populations had both cytotypes, while in North America diploid plants were found in only one mixed population and thus tetraploids clearly dominated. Our results showed a pronounced shift in the climatic niche between tetraploid populations in the native and introduced range toward drier climate in North America and a similar albeit smaller shift between diploids and tetraploids in the native range. The field data indicate that diploids have a predominately monocarpic life cycle, while tetraploids are often polycarpic. Additionally, the polycarpic life-form seems to be more prevalent among tetraploids in the introduced range than among tetraploids in the native range. Our study suggests that both ploidy types of C. maculosa were introduced into North America, but tetraploids became the dominant cytotype with invasion. We suggest that the invasive success of C. maculosa is partly due to preadaptation of the tetraploid cytotype in Europe to drier climate and possibly further adaptation to these conditions in the introduced range. The potential for earlier and longer seed production associated with the polycarpic life cycle constitutes an additional factor that may have led to the dominance of tetraploids over diploids in the introduced range.

177 citations

Journal ArticleDOI
TL;DR: The results indicate that the choice of an appropriate provenance and a sufficient genotypic diversity are important issues in ecological restoration, with a large provenance differentiation in fitness-related traits, particularly in seedling emergence.
Abstract: The increased translocation of plant species for biodiversity restoration and habitat creation has provoked a debate on provenance and genotypic diversity of the used plant material. Nonlocal provenances are often not adapted to the local environmental conditions, and low population genotypic diversity may result in genetic bottlenecks hampering successful establishment. We tested provenance differentiation of four plant species used in agri-environment schemes to increase biodiversity of agricultural landscapes (wildflower strips). Provenances were collected close to the experimental field and at four further sites of different distances ranging from 120 to 900 km. In two of these provenances, different levels of genotypic diversity were simulated by sowing seed from a high and low number of mother plants. We found a large provenance differentiation in fitness-related traits, particularly in seedling emergence. There was no evidence for a general superiority of the local population. The productivity was greater in populations of high genotypic diversity than in those of low diversity, but the effect was only significant in one species. Productivity was also more constant among populations of high diversity, reducing the risk of establishment failure. Our results indicate that the choice of an appropriate provenance and a sufficient genotypic diversity are important issues in ecological restoration. The use of local provenances does not always guarantee the best performance, but a spread of superior alien genotypes can be avoided. A sufficient genotypic diversity of the sown plants might be a biological insurance against fluctuations in ecosystem processes increasing the reliability of restoration measures.

174 citations


Cited by
More filters
Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: In this article, the authors suggest that the term "fragmentation" should be reserved for the breaking apart of habitat, independent of habitat loss, and that fragmentation per se has much weaker effects on biodiversity that are at least as likely to be positive as negative.
Abstract: ■ Abstract The literature on effects of habitat fragmentation on biodiversity is huge. It is also very diverse, with different authors measuring fragmentation in different ways and, as a consequence, drawing different conclusions regarding both the magnitude and direction of its effects. Habitat fragmentation is usually defined as a landscape-scale process involving both habitat loss and the breaking apart of habitat. Results of empirical studies of habitat fragmentation are often difficult to interpret because (a) many researchers measure fragmentation at the patch scale, not the landscape scale and (b) most researchers measure fragmentation in ways that do not distinguish between habitat loss and habitat fragmentation per se, i.e., the breaking apart of habitat after controlling for habitat loss. Empirical studies to date suggest that habitat loss has large, consistently negative effects on biodiversity. Habitat fragmentation per se has much weaker effects on biodiversity that are at least as likely to be positive as negative. Therefore, to correctly interpret the influence of habitat fragmentation on biodiversity, the effects of these two components of fragmentation must be measured independently. More studies of the independent effects of habitat loss and fragmentation per se are needed to determine the factors that lead to positive versus negative effects of fragmentation per se. I suggest that the term “fragmentation” should be reserved for the breaking apart of habitat, independent of habitat loss.

6,341 citations

Journal ArticleDOI
TL;DR: In this article, the authors used an enormous systematic phenological network data set of more than 125 000 observational series of 542 plant and 19 animal species in 21 European countries (1971-2000) and concluded that previously published results of phenological changes were not biased by reporting or publication predisposition.
Abstract: Global climate change impacts can already be tracked in many physical and biological systems; in particular, terrestrial ecosystems provide a consistent picture of observed changes. One of the preferred indicators is phenology, the science of natural recurring events, as their recorded dates provide a high-temporal resolution of ongoing changes. Thus, numerous analyses have demonstrated an earlier onset of spring events for mid and higher latitudes and a lengthening of the growing season. However, published single-site or single-species studies are particularly open to suspicion of being biased towards predominantly reporting climate change-induced impacts. No comprehensive study or meta-analysis has so far examined the possible lack of evidence for changes or shifts at sites where no temperature change is observed. We used an enormous systematic phenological network data set of more than 125 000 observational series of 542 plant and 19 animal species in 21 European countries (1971–2000). Our results showed that 78% of all leafing, flowering and fruiting records advanced (30% significantly) and only 3% were significantly delayed, whereas the signal of leaf colouring/fall is ambiguous. We conclude that previously published results of phenological changes were not biased by reporting or publication predisposition: the average advance of spring/summer was 2.5 days decade � 1 in Europe. Our analysis of 254 mean national time series undoubtedly demonstrates that species’ phenology is responsive to temperature of the preceding

2,457 citations

Journal ArticleDOI
TL;DR: It is concluded that management limiting gene flow among introduced populations may reduce adaptive potential but is unlikely to prevent expansion or the evolution of novel invasive behaviour.
Abstract: Invasive species are predicted to suffer from reductions in genetic diversity during founding events, reducing adaptive potential. Integrating evidence from two literature reviews and two case studies, we address the following questions: How much genetic diversity is lost in invasions? Do multiple introductions ameliorate this loss? Is there evidence for loss of diversity in quantitative traits? Do invaders that have experienced strong bottlenecks show adaptive evolution? How do multiple introductions influence adaptation on a landscape scale? We reviewed studies of 80 species of animals, plants, and fungi that quantified nuclear molecular diversity within introduced and source populations. Overall, there were significant losses of both allelic richness and heterozygosity in introduced populations, and large gains in diversity were rare. Evidence for multiple introductions was associated with increased diversity, and allelic variation appeared to increase over long timescales (~100 years), suggesting a role for gene flow in augmenting diversity over the long-term. We then reviewed the literature on quantitative trait diversity and found that broad-sense variation rarely declines in introductions, but direct comparisons of additive variance were lacking. Our studies of Hypericum canariense invasions illustrate how populations with diminished diversity may still evolve rapidly. Given the prevalence of genetic bottlenecks in successful invading populations and the potential for adaptive evolution in quantitative traits, we suggest that the disadvantages associated with founding events may have been overstated. However, our work on the successful invader Verbascum thapsus illustrates how multiple introductions may take time to commingle, instead persisting as a 'mosaic of maladaptation' where traits are not distributed in a pattern consistent with adaptation. We conclude that management limiting gene flow among introduced populations may reduce adaptive potential but is unlikely to prevent expansion or the evolution of novel invasive behaviour.

1,588 citations

Journal ArticleDOI
TL;DR: It is proposed that some invaders transform because they possess novel biochemical weapons that function as unusually powerful allelopathic agents, or as mediators of new plant–soil microbial interactions.
Abstract: When introduced to new habitats by humans, some plant species become much more dominant. This is primarily attributed to escape from specialist consumers. Release from these specialist enemies is also thought by some to lead to the evolution of increased competitive ability, driven by a decrease in the plant's resource allocation to consumer defense and an increase in allocation to size or fecundity. Here, we discuss a new theory for invasive success – the “novel weapons hypothesis”. We propose that some invaders transform because they possess novel biochemical weapons that function as unusually powerful allelopathic agents, or as mediators of new plant–soil microbial interactions. Root exudates that are relatively ineffective against their natural neighbors because of adaptation, may be highly inhibitory to newly encountered plants in invaded communities. In other words, the novel weapons of some plant invaders provide them with an advantage that may arise from differences in the regional coevolutionary ...

1,398 citations