scispace - formally typeset
Search or ask a question
Author

Thomas Wallner

Bio: Thomas Wallner is an academic researcher from Argonne National Laboratory. The author has contributed to research in topics: Combustion & Gasoline. The author has an hindex of 23, co-authored 112 publications receiving 2947 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive overview of hydrogen-fueled internal combustion engines (H 2 ICEs) can be found in this paper, where the authors discuss the fundamentals of the combustion of hydrogen, details on the different mixture formation strategies and their emissions characteristics, measures to convert existing vehicles, dedicated hydrogen engine features, a state of the art on increasing power output and efficiency while controlling emissions and modeling.

743 citations

Book ChapterDOI
29 Jul 2014
TL;DR: The types of sensors reviewed in this chapter are (1) room-temperature hydrogen leak sensors; (2) thermometers, particularly useful at low temperature; (3) liquid hydrogen volume and mass gauges; and (4) para/ortho hydrogen ratiometers as mentioned in this paper.
Abstract: Four types of hydrogen detectors are used by researchers, engineers, and manufacturers today, and if hydrogen continues to play a role in emerging alternative energy sources, there will be exponential growth in the use and need for more advanced and more robust devices in the future. The types of sensors reviewed in this chapter are (1) room-temperature hydrogen leak sensors; (2) thermometers, particularly useful at low temperature; (3) liquid hydrogen volume and mass gauges; and (4) para/ortho hydrogen ratiometers.

631 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluate a what-if scenario in terms of using butanol as an oxygenate, in place of ethanol, in an engine calibrated for gasoline operation.
Abstract: This study was designed to evaluate a ‘what-if’ scenario in terms of using butanol as an oxygenate, in place of ethanol in an engine calibrated for gasoline operation. No changes to the stock engine calibration were performed for this study. Combustion analysis, efficiency and emissions of pure gasoline, 10% ethanol and 10% butanol blends in a modern, direct-injection four-cylinder, spark ignition engine were analyzed. Data was taken at engine speeds of 1000 RPM up to 4000 RPM with load varying from 0 Nm (idle) to 150 Nm. Relatively minor differences existed between the three fuels for the combustion characteristics such as heat release rate, 50% mass fraction burned, and coefficient of variation of indicated mean effective pressure at low and medium engine loads. However at high engine loads the reduced knock resistance of the butanol blend forced the engine control unit to retard the ignition timing substantially, compared to the gasoline baseline and even more pronounced compared to the ethanol blend. Brake specific volumetric fuel consumption which represented a normalized volumetric fuel flow rate, was lowest for the gasoline baseline fuel, due to the higher energy density. The 10% butanol blend had a lower volumetric fuel consumption compared to the ethanol blend, as expected based on energy density differences. Results showed little difference in regulated emissions between 10% ethanol and 10% butanol. The ethanol blend produced the highest peak specific NOx due to the high octane rating of ethanol and effective anti-knock characteristics. Overall, the ability of butanol to perform equally as well as ethanol from an emissions and combustion standpoint, with a decrease in fuel consumption, initially appears promising. Further experiments are planned to explore the full operating range of the engine and the potential benefits of higher blend ratios of butanol.Copyright © 2008 by UChicago Argonne LLC, Operator of Argonne National Laboratory

230 citations

Journal ArticleDOI
TL;DR: The results showed that these vehicles achieved emissions levels that are only a fraction of the Super Ultra Low Emissions Vehicle (SULEV) standard for nitric oxide (NOx) and carbon monoxide (CO) emissions.

116 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors highlight previous influential studies and ongoing research to use this chemical as a viable energy vector for power applications, emphasizing the challenges that each of the reviewed technologies faces before implementation and commercial deployment is achieved at a larger scale.

908 citations

Journal ArticleDOI
TL;DR: In this article, the feasibility of adopting hydrogen as a key energy carrier and fuel source in the near future has been discussed and it is shown that hydrogen has several advantages, as well as few drawbacks in using for the above purposes.
Abstract: This paper provides an insight to the feasibility of adopting hydrogen as a key energy carrier and fuel source in the near future. It is shown that hydrogen has several advantages, as well as few drawbacks in using for the above purposes. The research shows that hydrogen will be a key player in storing energy that is wasted at generation stage in large-scale power grids by off-peak diversion to dummy loads. The estimations show that by the year of 2050 there will be a hydrogen demand of over 42 million metric tons or 45 billion gallon gasoline equivalent (GGE) in the United States of America alone which can fuel up 342 million light-duty vehicles for 51 × 1011 miles (82 × 1011 km) travel per year. The production at distributed level has also been discussed. The paper also presents the levels of risk in production, storage and distribution stages and proposes possible techniques to address safety issues. It is shown that the storage in small to medium scale containers is much economical compared to doing the same at large-scale containers. The study concludes that hydrogen has a promising future to be a highly feasible energy carrier and energy source itself at consumer level.

903 citations

Journal ArticleDOI
TL;DR: In this paper, a dual fuel engine combustion technology called Reactivity Controlled Compression Ignition (RCCI) is highlighted, since it provides more efficient control over the combustion process and has the capability to lower fuel use and pollutant emissions.

889 citations

Journal ArticleDOI
TL;DR: In this article, the properties of butanol are compared with the conventional gasoline, diesel fuel, and some widely used biofuels, i.e. methanol, ethanol, biodiesel.
Abstract: Butanol is a very competitive renewable biofuel for use in internal combustion engines given its many advantages. In this review, the properties of butanol are compared with the conventional gasoline, diesel fuel, and some widely used biofuels, i.e. methanol, ethanol, biodiesel. The comparison of fuel properties indicates that n-butanol has the potential to overcome the drawbacks brought by low-carbon alcohols or biodiesel. Then, the development of butanol production is reviewed and various methods for increasing fermentative butanol production are introduced in detailed, i.e. metabolic engineering of the Clostridia, advanced fermentation technique. The most costive part of the fermentation is the substrate, so methods involved in renewed substrates are also mentioned. Next, the applications of butanol as a biofuel are summarized from three aspects: (1) fundamental combustion experiments in some well-defined burning reactors; (2) a substitute for gasoline in spark ignition engine; (3) a substitute for diesel fuel in compression ignition engine. These studies demonstrate that butanol, as a potential second generation biofuel, is a better alternative for the gasoline or diesel fuel, from the viewpoints of combustion characteristics, engine performance, and exhaust emissions. However, butanol has not been intensively studied when compared to ethanol or biodiesel, for which considerable numbers of reports are available. Finally, some challenges and future research directions are outlined in the last section of this review.

850 citations