scispace - formally typeset
Search or ask a question
Author

Thomas Wiegand

Bio: Thomas Wiegand is an academic researcher from Heinrich Hertz Institute. The author has contributed to research in topics: Scalable Video Coding & Motion compensation. The author has an hindex of 73, co-authored 394 publications receiving 46470 citations. Previous affiliations of Thomas Wiegand include Free University of Berlin & University of Erlangen-Nuremberg.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the technical features of H.264/AVC is provided, profiles and applications for the standard are described, and the history of the standardization process is outlined.
Abstract: H.264/AVC is newest video coding standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The main goals of the H.264/AVC standardization effort have been enhanced compression performance and provision of a "network-friendly" video representation addressing "conversational" (video telephony) and "nonconversational" (storage, broadcast, or streaming) applications. H.264/AVC has achieved a significant improvement in rate-distortion efficiency relative to existing standards. This article provides an overview of the technical features of H.264/AVC, describes profiles and applications for the standard, and outlines the history of the standardization process.

8,646 citations

Journal ArticleDOI
TL;DR: The main goal of the HEVC standardization effort is to enable significantly improved compression performance relative to existing standards-in the range of 50% bit-rate reduction for equal perceptual video quality.
Abstract: High Efficiency Video Coding (HEVC) is currently being prepared as the newest video coding standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The main goal of the HEVC standardization effort is to enable significantly improved compression performance relative to existing standards-in the range of 50% bit-rate reduction for equal perceptual video quality. This paper provides an overview of the technical features and characteristics of the HEVC standard.

7,383 citations

Journal ArticleDOI
TL;DR: An overview of the basic concepts for extending H.264/AVC towards SVC are provided and the basic tools for providing temporal, spatial, and quality scalability are described in detail and experimentally analyzed regarding their efficiency and complexity.
Abstract: With the introduction of the H.264/AVC video coding standard, significant improvements have recently been demonstrated in video compression capability. The Joint Video Team of the ITU-T VCEG and the ISO/IEC MPEG has now also standardized a Scalable Video Coding (SVC) extension of the H.264/AVC standard. SVC enables the transmission and decoding of partial bit streams to provide video services with lower temporal or spatial resolutions or reduced fidelity while retaining a reconstruction quality that is high relative to the rate of the partial bit streams. Hence, SVC provides functionalities such as graceful degradation in lossy transmission environments as well as bit rate, format, and power adaptation. These functionalities provide enhancements to transmission and storage applications. SVC has achieved significant improvements in coding efficiency with an increased degree of supported scalability relative to the scalable profiles of prior video coding standards. This paper provides an overview of the basic concepts for extending H.264/AVC towards SVC. Moreover, the basic tools for providing temporal, spatial, and quality scalability are described in detail and experimentally analyzed regarding their efficiency and complexity.

3,592 citations

Journal ArticleDOI
TL;DR: A unified approach to the coder control of video coding standards such as MPEG-2, H.263, MPEG-4, and the draft video coding standard H.264/AVC (advanced video coding) is presented.
Abstract: A unified approach to the coder control of video coding standards such as MPEG-2, H.263, MPEG-4, and the draft video coding standard H.264/AVC (advanced video coding) is presented. The performance of the various standards is compared by means of PSNR and subjective testing results. The results indicate that H.264/AVC compliant encoders typically achieve essentially the same reproduction quality as encoders that are compliant with the previous standards while typically requiring 60% or less of the bit rate.

3,312 citations

Journal ArticleDOI
TL;DR: Based on the well-known hybrid video coding structure, Lagrangian optimization techniques are presented that try to answer the question: what part of the video signal should be coded using what method and parameter settings?
Abstract: The rate-distortion efficiency of video compression schemes is based on a sophisticated interaction between various motion representation possibilities, waveform coding of differences, and waveform coding of various refreshed regions. Hence, a key problem in high-compression video coding is the operational control of the encoder. This problem is compounded by the widely varying content and motion found in typical video sequences, necessitating the selection between different representation possibilities with varying rate-distortion efficiency. This article addresses the problem of video encoder optimization and discusses its consequences on the compression architecture of the overall coding system. Based on the well-known hybrid video coding structure, Lagrangian optimization techniques are presented that try to answer the question: what part of the video signal should be coded using what method and parameter settings?.

1,954 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: An overview of the technical features of H.264/AVC is provided, profiles and applications for the standard are described, and the history of the standardization process is outlined.
Abstract: H.264/AVC is newest video coding standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The main goals of the H.264/AVC standardization effort have been enhanced compression performance and provision of a "network-friendly" video representation addressing "conversational" (video telephony) and "nonconversational" (storage, broadcast, or streaming) applications. H.264/AVC has achieved a significant improvement in rate-distortion efficiency relative to existing standards. This article provides an overview of the technical features of H.264/AVC, describes profiles and applications for the standard, and outlines the history of the standardization process.

8,646 citations

Journal ArticleDOI
TL;DR: The main goal of the HEVC standardization effort is to enable significantly improved compression performance relative to existing standards-in the range of 50% bit-rate reduction for equal perceptual video quality.
Abstract: High Efficiency Video Coding (HEVC) is currently being prepared as the newest video coding standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The main goal of the HEVC standardization effort is to enable significantly improved compression performance relative to existing standards-in the range of 50% bit-rate reduction for equal perceptual video quality. This paper provides an overview of the technical features and characteristics of the HEVC standard.

7,383 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

Journal ArticleDOI
TL;DR: An overview of the basic concepts for extending H.264/AVC towards SVC are provided and the basic tools for providing temporal, spatial, and quality scalability are described in detail and experimentally analyzed regarding their efficiency and complexity.
Abstract: With the introduction of the H.264/AVC video coding standard, significant improvements have recently been demonstrated in video compression capability. The Joint Video Team of the ITU-T VCEG and the ISO/IEC MPEG has now also standardized a Scalable Video Coding (SVC) extension of the H.264/AVC standard. SVC enables the transmission and decoding of partial bit streams to provide video services with lower temporal or spatial resolutions or reduced fidelity while retaining a reconstruction quality that is high relative to the rate of the partial bit streams. Hence, SVC provides functionalities such as graceful degradation in lossy transmission environments as well as bit rate, format, and power adaptation. These functionalities provide enhancements to transmission and storage applications. SVC has achieved significant improvements in coding efficiency with an increased degree of supported scalability relative to the scalable profiles of prior video coding standards. This paper provides an overview of the basic concepts for extending H.264/AVC towards SVC. Moreover, the basic tools for providing temporal, spatial, and quality scalability are described in detail and experimentally analyzed regarding their efficiency and complexity.

3,592 citations