scispace - formally typeset
Search or ask a question
Author

Thor Jensen

Bio: Thor Jensen is an academic researcher from King Abdullah University of Science and Technology. The author has contributed to research in topics: Coral bleaching & Coral. The author has an hindex of 3, co-authored 5 publications receiving 81 citations.

Papers
More filters
Journal ArticleDOI
19 Apr 2018-PLOS ONE
TL;DR: Bleaching was most prevalent on inshore reefs and on shallower transects within reefs, and Coral genera with the highest levels of bleaching were also among the rarest (<1% of coral cover) in 2015.
Abstract: Coral bleaching continues to be one of the most devastating and immediate impacts of climate change on coral reef ecosystems worldwide. In 2015, a major bleaching event was declared as the "3rd global coral bleaching event" by the United States National Oceanic and Atmospheric Administration, impacting a large number of reefs in every major ocean. The Red Sea was no exception, and we present herein in situ observations of the status of coral reefs in the central Saudi Arabian Red Sea from September 2015, following extended periods of high temperatures reaching upwards of 32.5°C in our study area. We examined eleven reefs using line-intercept transects at three different depths, including all reefs that were surveyed during a previous bleaching event in 2010. Bleaching was most prevalent on inshore reefs (55.6% ± 14.6% of live coral cover exhibited bleaching) and on shallower transects (41% ± 10.2% of live corals surveyed at 5m depth) within reefs. Similar taxonomic groups (e.g., Agariciidae) were affected in 2015 and in 2010. Most interestingly, Acropora and Porites had similar bleaching rates (~30% each) and similar relative coral cover (~7% each) across all reefs in 2015. Coral genera with the highest levels of bleaching (>60%) were also among the rarest (<1% of coral cover) in 2015. While this bodes well for the relative retention of coral cover, it may ultimately lead to decreased species richness, often considered an important component of a healthy coral reef. The resultant long-term changes in these coral reef communities remain to be seen.

82 citations

Journal ArticleDOI
12 Jul 2018-PeerJ
TL;DR: The data suggest that BBD represents a global coral disease with predictable etiology, and provides a baseline assessment of BBD disease prevalence in the Red Sea, a still understudied region.
Abstract: Black Band Disease (BBD) is a widely distributed and destructive coral disease that has been studied on a global scale, but baseline data on coral diseases is missing from many areas of the Arabian Seas. Here we report on the broad distribution and prevalence of BBD in the Red Sea in addition to documenting a bleaching-associated outbreak of BBD with subsequent microbial community characterization of BBD microbial mats at this reef site in the southern central Red Sea. Coral colonies with BBD were found at roughly a third of our 22 survey sites with an overall prevalence of 0.04%. Nine coral genera were infected including Astreopora, Coelastrea, Dipsastraea, Gardineroseris, Goniopora, Montipora, Pavona, Platygyra, and Psammocora. For a southern central Red Sea outbreak site, overall prevalence was 40 times higher than baseline (1.7%). Differential susceptibility to BBD was apparent among coral genera with Dipsastraea (prevalence 6.1%), having more diseased colonies than was expected based on its abundance within transects. Analysis of the microbial community associated with the BBD mat showed that it is dominated by a consortium of cyanobacteria and heterotrophic bacteria. We detected the three main indicators for BBD (filamentous cyanobacteria, sulfate-reducing bacteria (SRB), and sulfide-oxidizing bacteria (SOB)), with high similarity to BBD-associated microbes found worldwide. More specifically, the microbial consortium of BBD-diseased coral colonies in the Red Sea consisted of Oscillatoria sp. (cyanobacteria), Desulfovibrio sp. (SRB), and Arcobacter sp. (SOB). Given the similarity of associated bacteria worldwide, our data suggest that BBD represents a global coral disease with predictable etiology. Furthermore, we provide a baseline assessment of BBD disease prevalence in the Red Sea, a still understudied region.

18 citations

Journal ArticleDOI
09 Jul 2021-PLOS ONE
TL;DR: In this article, the authors conducted disease surveys at 22 reefs within three regions (Yanbu, Thuwal, Al Lith) in the central Red Sea along the Saudi Arabian coast.
Abstract: Coral disease is a growing problem for coral reefs globally and diseases have been linked to thermal stress, excess nutrients, overfishing and other human impacts. The Red Sea is a unique environment for corals with a strong environmental gradient characterized by temperature extremes and high salinities, but minimal terrestrial runoff or riverine input and their associated pollution. Yet, relatively little is known about coral diseases in this region. Disease surveys were conducted at 22 reefs within three regions (Yanbu, Thuwal, Al Lith) in the central Red Sea along the Saudi Arabian coast. Surveys occurred in October 2015, which coincided with a hyperthermal-induced bleaching event. Our objectives were to 1) document types, prevalence, and distribution of coral diseases in a region with minimal terrestrial input, 2) compare regional differences in diseases and bleaching along a latitudinal gradient of environmental conditions, and 3) use histopathology to characterize disease lesions at the cellular level. Coral reefs of the central Red Sea had a widespread but a surprisingly low prevalence of disease ( 75,750 colonies. Twenty diseases were recorded affecting 16 coral taxa and included black band disease, white syndromes, endolithic hypermycosis, skeletal eroding band, growth anomalies and focal bleached patches. The three most common diseases were Acropora white syndrome (59.1% of the survey sites), Porites growth anomalies (40.9%), and Porites white syndrome (31.8%). Sixteen out of 30 coral genera within transects had lesions and Acropora, Millepora and Lobophyllia were the most commonly affected. Cell-associated microbial aggregates were found in four coral genera including a first report in Stylophora. Differences in disease prevalence, coral cover, amount of heat stress as measured by degree heating weeks (DHW) and extent of bleaching was evident among sites. Disease prevalence was not explained by coral cover or DHW, and a negative relationship between coral bleaching and disease prevalence was found. The northern-most sites off the coast of Yanbu had the highest average disease prevalence and highest average DHW values but no bleaching. Our study provides a foundation and baseline data for coral disease prevalence in the central Red Sea, which is projected to increase as a consequence of increased frequency and severity of ocean warming.

6 citations

Posted ContentDOI
28 Jan 2021-bioRxiv
TL;DR: The Red Sea is a unique environment for corals with a strong environmental gradient characterized by temperature extremes and high salinities, but minimal terrestrial runoff or riverine input and their associated pollution as discussed by the authors.
Abstract: The Red Sea is a unique environment for corals with a strong environmental gradient characterized by temperature extremes and high salinities, but minimal terrestrial runoff or riverine input and their associated pollution. Disease surveys were conducted along 22 reefs in the central Red Sea along the Saudi Arabian coast in October 2015, which coincided with a bleaching event. Our objectives were to 1) document types, prevalence, and distribution of coral diseases in a region with minimal terrestrial input, 2) compare regional differences in diseases and bleaching along a latitudinal gradient of environmental conditions, and 3) use histopathology to characterize disease lesions at the cellular level. Coral reefs of the central Red Sea had a widespread but a surprisingly low prevalence of disease ( 75,750 colonies. Twenty diseases were recorded affecting 16 coral taxa and included black band disease, white syndromes, endolithic hypermycosis, skeletal eroding band, growth anomalies and focal bleached patches. The three most common diseases were Acropora white syndrome (59.1% of the survey sites), Poritesgrowth anomalies (40.9%), and Porites white syndrome (31.8%). Over half of the coral genera within transects had lesions and corals from the genera Acropora, Millepora and Lobophyllia were the most commonly affected. Cell-associated microbial aggregates were found in four coral genera resembling patterns found in the Indo-Pacific. Differences in disease prevalence, coral cover, amount of heat stress as measured by degree heating weeks (DHW) and extent of bleaching was evident among sites. Disease prevalence was not explained by coral cover or DHW, and a negative relationship between coral bleaching and disease prevalence was found. The northern-most sites off the coast of Yanbu had the highest average DHW values but absence of bleaching and the highest average disease prevalence was recorded. Our study provides a foundation and baseline data for coral disease prevalence in the Red Sea, which is projected to increase as a consequence of increased frequency and severity of ocean warming.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The microbiota associated with disease lesions and apparently healthy tissue on diseased colonies of Montastraea cavernosa, Orbicella faveolata, Diploria labyrinthiformis, and Dichocoenia stokesii are examined, representing the first microbiological characterization of SCTLD.
Abstract: As many as 22 of the 45 coral species on the Florida Reef Tract are currently affected by stony coral tissue loss disease (SCTLD). The ongoing disease outbreak was first observed in 2014 in Southeast Florida near Miami and as of early 2019 has been documented from the northernmost reaches of the reef tract in Martin County down to Key West. We examined the microbiota associated with disease lesions and apparently healthy tissue on diseased colonies of Montastraea cavernosa, Orbicella faveolata, Diploria labyrinthiformis, and Dichocoenia stokesii. Analysis of differentially abundant taxa between disease lesions and apparently healthy tissue identified five unique amplicon sequence variants enriched in the diseased tissue in three of the coral species (all except O. faveolata), namely an unclassified genus of Flavobacteriales and sequences identified as Fusibacter (Clostridiales), Planktotalea (Rhodobacterales), Algicola (Alteromonadales), and Vibrio (Vibrionales). In addition, several groups of likely opportunistic or saprophytic colonizers such as Epsilonbacteraeota, Patescibacteria, Clostridiales, Bacteroidetes, and Rhodobacterales were also enriched in SCTLD disease lesions. This work represents the first microbiological characterization of SCTLD, as an initial step toward identifying the potential pathogen(s) responsible for SCTLD.

107 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the causes and consequences of the 2017 bleaching event on eight reefs located across 350 km of the southern basin of the Persian/Arabian Gulf and showed that 2017 was characterized by an extended period of mid-summer calm when winds rarely exceeded breeze conditions.
Abstract: Coral reefs of the Persian/Arabian Gulf were the last to succumb to the effects of the global-scale mass coral bleaching event that began in 2015. This study examines the causes and consequences of the 2017 bleaching event on eight reefs located across > 350 km of the southern basin of the Gulf. Using a combination of 5 yr (2013–2017) of reef-based temperature observations, local meteorological data and water column modeling, we show that 2017 was characterized by an extended period of mid-summer calm when winds rarely exceeded breeze conditions, reducing evaporative heat loss and inducing dramatic warming compared with non-bleaching years (2013–2016). Reef-bottom temperatures in the Gulf in 2017 were among the hottest on record, with mean daily maxima averaging 35.9 ± 0.1 °C across sites, with hourly temperatures reaching as high as 37.7 °C. Across the southern Gulf, corals spent nearly 2 months (mean 55.1 ± 3.9 d above bleaching temperatures and nearly 2 weeks above lethal temperatures (11.8 ± 2.4 d), substantially longer than in the non-bleaching years (2013–2016) and equating with 5.5 °C-weeks of thermal stress as degree heating weeks. As a result, 94.3% of corals bleached, and two-thirds of corals were lost to mortality between April and September 2017. Mortality continued after peak bleaching, and by April 2018 coral cover averaged just 7.5% across the southern basin, representing an overall loss of nearly three-quarters of coral (73%) in 1 yr. This mass mortality did not cause dramatic shifts in community composition as earlier bleaching events had removed most sensitive taxa. An exception was the already rare Acropora which were locally extirpated in summer 2017. Given the increasing frequency of mass bleaching in the Gulf and the above global rates of regional warming, the capacity for recovery and the prognosis for the future of Gulf reefs are not optimistic.

76 citations

Journal ArticleDOI
TL;DR: It is argued that bleached corals benefit from the stable composition of mucus bacteria that resemble their healthy coral counterparts and presumably provide a conserved suite of protective functions, but monitoring of post-bleaching survival is needed to further confirm this assumption.
Abstract: Coral reefs are subject to coral bleaching manifested by the loss of endosymbiotic algae from coral host tissue. Besides algae, corals associate with bacteria. In particular, bacteria residing in the surface mucus layer are thought to mediate coral health, but their role in coral bleaching is unknown. We collected mucus from bleached and healthy Porites lobata colonies in the Persian/Arabian Gulf (PAG) and the Red Sea (RS) to investigate bacterial microbiome composition using 16S rRNA gene amplicon sequencing. We found that bacterial community structure was notably similar in bleached and healthy corals, and the most abundant bacterial taxa were identical. However, fine-scale differences in bacterial community composition between the PAG and RS were present and aligned with predicted differences in sulfur- and nitrogen-cycling processes. Based on our data, we argue that bleached corals benefit from the stable composition of mucus bacteria that resemble their healthy coral counterparts and presumably provide a conserved suite of protective functions, but monitoring of post-bleaching survival is needed to further confirm this assumption. Conversely, fine-scale site-specific differences highlight flexibility of the bacterial microbiome that may underlie adjustment to local environmental conditions and contribute to the widespread success of Porites lobata.

61 citations

Journal ArticleDOI
TL;DR: The regionally tuned MHW algorithm was capable of isolating all extreme warming events that have led to documented coral bleaching in the Red Sea, and it is proposed that this approach could be used to reveal bleaching-prone regions in other data-limited tropical regions.
Abstract: This publication is supported by the Office of Sponsored Research (OSP) at King Abdullah University of Science and Technology (KAUST) under the Virtual Red Sea Initiative (REP/1/3268-01-01). We are grateful to the Met Office, the Group for High Resolution SST (GHRSST), the Global Telecommunications System (GTS), and EUMETSAT Ocean and Sea Ice Satellite Applications Facility (OSI-SAF) for making the OSTIA database available, and to UNEP-WCMC for providing the Global distribution of warm-water coral reefs database. We thank Ute Langner for processing the coral reef locations, and John A. Gittings for his initial constructive comments.

56 citations

Journal ArticleDOI
TL;DR: In this paper, a SWOT analysis (strengths/weaknesses/opportunities/threats) is used to frame the present situation and to propose policy solutions as useful planning procedures.

55 citations