Author

# Thorsten Joachims

Other affiliations: Technical University of Dortmund, Max Planck Society

Bio: Thorsten Joachims is an academic researcher from Cornell University. The author has contributed to research in topics: Support vector machine & Ranking. The author has an hindex of 75, co-authored 226 publications receiving 56320 citations. Previous affiliations of Thorsten Joachims include Technical University of Dortmund & Max Planck Society.

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

TL;DR: This paper explores the use of Support Vector Machines for learning text classifiers from examples and analyzes the particular properties of learning with text data and identifies why SVMs are appropriate for this task.

Abstract: This paper explores the use of Support Vector Machines (SVMs) for learning text classifiers from examples. It analyzes the particular properties of learning with text data and identifies why SVMs are appropriate for this task. Empirical results support the theoretical findings. SVMs achieve substantial improvements over the currently best performing methods and behave robustly over a variety of different learning tasks. Furthermore they are fully automatic, eliminating the need for manual parameter tuning.

8,287 citations

••

[...]

TL;DR: The goal of this paper is to develop a method that utilizes clickthrough data for training, namely the query-log of the search engine in connection with the log of links the users clicked on in the presented ranking.

Abstract: This paper presents an approach to automatically optimizing the retrieval quality of search engines using clickthrough data. Intuitively, a good information retrieval system should present relevant documents high in the ranking, with less relevant documents following below. While previous approaches to learning retrieval functions from examples exist, they typically require training data generated from relevance judgments by experts. This makes them difficult and expensive to apply. The goal of this paper is to develop a method that utilizes clickthrough data for training, namely the query-log of the search engine in connection with the log of links the users clicked on in the presented ranking. Such clickthrough data is available in abundance and can be recorded at very low cost. Taking a Support Vector Machine (SVM) approach, this paper presents a method for learning retrieval functions. From a theoretical perspective, this method is shown to be well-founded in a risk minimization framework. Furthermore, it is shown to be feasible even for large sets of queries and features. The theoretical results are verified in a controlled experiment. It shows that the method can effectively adapt the retrieval function of a meta-search engine to a particular group of users, outperforming Google in terms of retrieval quality after only a couple of hundred training examples.

4,297 citations

••

[...]

TL;DR: SVM light as discussed by the authors is an implementation of an SVM learner which addresses the problem of large-scale SVM training with many training examples on the shelf, which makes large scale SVM learning more practical.

Abstract: Training a support vector machine SVM leads to a quadratic optimization problem with bound constraints and one linear equality constraint Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner In particular, for large learning tasks with many training examples on the shelf optimization techniques for general quadratic programs quickly become intractable in their memory and time requirements SVM light is an implementation of an SVM learner which addresses the problem of large tasks This chapter presents algorithmic and computational results developed for SVM light V 20, which make large-scale SVM training more practical The results give guidelines for the application of SVMs to large domains

4,071 citations

•

[...]

27 Jun 1999

TL;DR: An analysis of why Transductive Support Vector Machines are well suited for text classi cation is presented, and an algorithm for training TSVMs, handling 10,000 examples and more is proposed.

Abstract: This paper introduces Transductive Support Vector Machines (TSVMs) for text classi cation. While regular Support Vector Machines (SVMs) try to induce a general decision function for a learning task, Transductive Support Vector Machines take into account a particular test set and try to minimize misclassi cations of just those particular examples. The paper presents an analysis of why TSVMs are well suited for text classi cation. These theoretical ndings are supported by experiments on three test collections. The experiments show substantial improvements over inductive methods, especially for small training sets, cutting the number of labeled training examples down to a twentieth on some tasks. This work also proposes an algorithm for training TSVMs e ciently, handling 10,000 examples and more.

2,996 citations

•

[...]

TL;DR: This paper proposes to appropriately generalize the well-known notion of a separation margin and derive a corresponding maximum-margin formulation and presents a cutting plane algorithm that solves the optimization problem in polynomial time for a large class of problems.

Abstract: Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary issue of designing classification algorithms that can deal with more complex outputs, such as trees, sequences, or sets. More generally, we consider problems involving multiple dependent output variables, structured output spaces, and classification problems with class attributes. In order to accomplish this, we propose to appropriately generalize the well-known notion of a separation margin and derive a corresponding maximum-margin formulation. While this leads to a quadratic program with a potentially prohibitive, i.e. exponential, number of constraints, we present a cutting plane algorithm that solves the optimization problem in polynomial time for a large class of problems. The proposed method has important applications in areas such as computational biology, natural language processing, information retrieval/extraction, and optical character recognition. Experiments from various domains involving different types of output spaces emphasize the breadth and generality of our approach.

2,243 citations

##### Cited by

More filters

••

[...]

TL;DR: Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.

Abstract: LIBSVM is a library for Support Vector Machines (SVMs). We have been actively developing this package since the year 2000. The goal is to help users to easily apply SVM to their applications. LIBSVM has gained wide popularity in machine learning and many other areas. In this article, we present all implementation details of LIBSVM. Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.

37,868 citations

••

[...]

TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.

Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality.
Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

30,199 citations

••

[...]

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).

Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

29,453 citations

••

[...]

TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.

Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

28,803 citations

•

[...]

TL;DR: This paper proposed a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI).

Abstract: We propose a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams [6], and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI) [3]. In the context of text modeling, our model posits that each document is generated as a mixture of topics, where the continuous-valued mixture proportions are distributed as a latent Dirichlet random variable. Inference and learning are carried out efficiently via variational algorithms. We present empirical results on applications of this model to problems in text modeling, collaborative filtering, and text classification.

25,546 citations