scispace - formally typeset
Search or ask a question
Author

Thurman E. Gier

Bio: Thurman E. Gier is an academic researcher from University of California, Santa Barbara. The author has contributed to research in topics: Crystal structure & Sodalite. The author has an hindex of 27, co-authored 62 publications receiving 5125 citations. Previous affiliations of Thurman E. Gier include University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
24 Mar 1994-Nature
TL;DR: In this article, a generalized approach to the synthesis of periodic mesophases of metal oxides and cationic or anionic surfactants under a range of pH conditions is presented.
Abstract: THE recent synthesis of silica-based mesoporous materials1,2 by the cooperative assembly of periodic inorganic and surfactant-based structures has attracted great interest because it extends the range of molecular-sieve materials into the very-large-pore regime. If the synthetic approach can be generalized to transition-metal oxide mesostructures, the resulting nanocomposite materials might find applications in electrochromic or solid-electrolyte devices3,4, as high-surface-area redox catalysts5 and as substrates for biochemical separations. We have proposed recently6 that the matching of charge density at the surfactant/inorganic interfaces governs the assembly process; such co-organization of organic and inorganic phases is thought to be a key aspect of biomineralization7. Here we report a generalized approach to the synthesis of periodic mesophases of metal oxides and cationic or anionic surfactants under a range of pH conditions. We suggest that the assembly process is controlled by electrostatic complementarity between the inorganic ions in solution, the charged surfactant head groups and—when these charges both have the same sign—inorganic counterions. We identify a number of different general strategies for obtaining a variety of ordered composite materials.

1,996 citations

Journal ArticleDOI
TL;DR: In this article, the organization of cationic or anionic organic and inorganic molecular species to produce three-dimensional periodic biphase arrays is described, which uses cooperative nucleation of molecular inorganic solution species with surfactant molecules and their assembly a t low temperatures into liquid-crystal-like arrays.
Abstract: The organization of cationic or anionic organic and inorganic molecular species to produce three-dimensional periodic biphase arrays is described. The approach uses cooperative nucleation of molecular inorganic solution species with surfactant molecules and their assembly a t low temperatures into liquid-crystal-like arrays. The organic/inorganic interface chemistry makes use of four synthesis routes with @+I-), @-I+), (S+X-I+), and (S-M+I-) direct and mediated combinations of surfactant (cationic S+, anionic S-) and soluble inorganic (cationic I+, anionic I-) molecular species. The concepts can be widely applied to generate inorganic oxide, phosphate or sulfide framework compositions. Distinct lamellar, cubic silica mesophases were synthesized in a concentrated acidic medium (S+X-I+), with the hexagonal and the cubic phases showing good thermal stability. For the hexagonal mesostructured silica materials high BET surface areas (>lo00 m2/g) are found. Hexagonal tungsten(V1) oxide materials were prepared in the presence of quaternary ammonium surfactants in the pH range 4-8. Cubic (Iu3d) and hexagonal antimony(V) oxides were obtained by acidifying (pH = 6-7) homogeneous solutions of soluble Sb(V) anions and quaternary ammonium surfactants a t room temperature @+I-). Using anionic surfactants, hexagonal and lamellar lead oxide mesostructures were found (S-I+). Crystalline zinc phosphate lamellar phases were obtained a t low synthesis temperatures (4 \"C) and lamellar sulfide phases could be also readily generated a t room temperature. The synthesis procedure presented is relevant to the coorganization of organic and inorganic phases in biomineralization processes, and some of the biomimetic implications are discussed.

1,379 citations

Journal ArticleDOI
TL;DR: In this article, the relative intensities of second harmonic generation (SHG) in sorbate complexes of p-nitroaniline (NA) and 2-methyl-p-nitrogenine (MNA) in molecular sieve hosts is presented.
Abstract: : A study of the relative intensities of second harmonic generation (SHG) in sorbate complexes of p-nitroaniline (NA) and 2-methyl-p-nitroaniline (MNA) in molecular sieve hosts is presented. An SHG signal ten times larger than that of any previously reported organic or organometallic inclusion complex is observed. NA in ALPO-5 complexes have a maximum SHG of 630 at 13 wt. % NA. Pure NA has no SHG signal. With MNA in ALPO-5 (13 wt. ) the SHG signal is equal to that of the ALPO-5 host. X ray powder diffraction was used to characterize the inclusion nanocomposites. The ability to switch on and enhance SHG in NA and switch off SHG in MNA is ascribed to sorbate-host and sorbate-sorbate alignment interactions. Anilines, Nitroradicals. (MJM)

180 citations


Cited by
More filters
Journal ArticleDOI
23 Jan 1998-Science
TL;DR: Use of amphiphilic triblock copolymers to direct the organization of polymerizing silica species has resulted in the preparation of well-ordered hexagonal mesoporous silica structures (SBA-15) with uniform pore sizes up to approximately 300 angstroms.
Abstract: Use of amphiphilic triblock copolymers to direct the organization of polymerizing silica species has resulted in the preparation of well-ordered hexagonal mesoporous silica structures (SBA-15) with uniform pore sizes up to approximately 300 angstroms. The SBA-15 materials are synthesized in acidic media to produce highly ordered, two-dimensional hexagonal (space group p6mm) silica-block copolymer mesophases. Calcination at 500°C gives porous structures with unusually large interlattice d spacings of 74.5 to 320 angstroms between the (100) planes, pore sizes from 46 to 300 angstroms, pore volume fractions up to 0.85, and silica wall thicknesses of 31 to 64 angstroms. SBA-15 can be readily prepared over a wide range of uniform pore sizes and pore wall thicknesses at low temperature (35° to 80°C), using a variety of poly(alkylene oxide) triblock copolymers and by the addition of cosolvent organic molecules. The block copolymer species can be recovered for reuse by solvent extraction with ethanol or removed by heating at 140°C for 3 hours, in both cases, yielding a product that is thermally stable in boiling water.

10,807 citations

Journal ArticleDOI
18 Nov 1999-Nature
TL;DR: In this article, an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxyates.
Abstract: Open metal–organic frameworks are widely regarded as promising materials for applications1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 in catalysis, separation, gas storage and molecular recognition. Compared to conventionally used microporous inorganic materials such as zeolites, these organic structures have the potential for more flexible rational design, through control of the architecture and functionalization of the pores. So far, the inability of these open frameworks to support permanent porosity and to avoid collapsing in the absence of guest molecules, such as solvents, has hindered further progress in the field14,15. Here we report the synthesis of a metal–organic framework which remains crystalline, as evidenced by X-ray single-crystal analyses, and stable when fully desolvated and when heated up to 300?°C. This synthesis is achieved by borrowing ideas from metal carboxylate cluster chemistry, where an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxylates. The rigid and divergent character of the added linker allows the articulation of the clusters into a three-dimensional framework resulting in a structure with higher apparent surface area and pore volume than most porous crystalline zeolites. This simple and potentially universal design strategy is currently being pursued in the synthesis of new phases and composites, and for gas-storage applications.

6,778 citations

Journal ArticleDOI
TL;DR: In this paper, a family of highly ordered mesoporous (20−300 A) structures have been synthesized by the use of commercially available nonionic alkyl poly(ethylene oxide) (PEO) oligomeric surfactants and poly(alkylene oxide) block copolymers in acid media.
Abstract: A family of highly ordered mesoporous (20−300 A) silica structures have been synthesized by the use of commercially available nonionic alkyl poly(ethylene oxide) (PEO) oligomeric surfactants and poly(alkylene oxide) block copolymers in acid media. Periodic arrangements of mescoscopically ordered pores with cubic Im3m, cubic Pm3m (or others), 3-d hexagonal (P63/mmc), 2-d hexagonal (p6mm), and lamellar (Lα) symmetries have been prepared. Under acidic conditions at room temperature, the nonionic oligomeric surfactants frequently form cubic or 3-d hexagonal mesoporous silica structures, while the nonionic triblock copolymers tend to form hexagonal (p6mm) mesoporous silica structures. A cubic mesoporous silica structure (SBA-11) with Pm3m diffraction symmetry has been synthesized in the presence of C16H33(OCH2CH2)10OH (C16EO10) surfactant species, while a 3-d hexagonal (P63/mmc) mesoporous silica structure (SBA-12) results when C18EO10 is used. Surfactants with short EO segments tend to form lamellar mesost...

6,274 citations

Journal ArticleDOI
TL;DR: Corma et al. as mentioned in this paper used the Dupont Award on new materials (1995), and the Spanish National Award “Leonardo Torres Quevedo” on Technology Research (1996) on technology research (1996), to recognize the performance of zeolites as catalysts for oil refining and petrochemistry.
Abstract: It is possible to say that zeolites are the most widely used catalysts in industry They are crystalline microporous materials which have become extremely successful as catalysts for oil refining, petrochemistry, and organic synthesis in the production of fine and speciality chemicals, particularly when dealing with molecules having kinetic diameters below 10 A The reason for their success in catalysis is related to the following specific features of these materials:1 (1) They have very high surface area and adsorption capacity (2) The adsorption properties of the zeolites can be controlled, and they can be varied from hydrophobic to hydrophilic type materials (3) Active sites, such as acid sites for instance, can be generated in the framework and their strength and concentration can be tailored for a particular application (4) The sizes of their channels and cavities are in the range typical for many molecules of interest (5-12 A), and the strong electric fields2 existing in those micropores together with an electronic confinement of the guest molecules3 are responsible for a preactivation of the reactants (5) Their intricate channel structure allows the zeolites to present different types of shape selectivity, ie, product, reactant, and transition state, which can be used to direct a given catalytic reaction toward the desired product avoiding undesired side reactions (6) All of these properties of zeolites, which are of paramount importance in catalysis and make them attractive choices for the types of processes listed above, are ultimately dependent on the thermal and hydrothermal stability of these materials In the case of zeolites, they can be activated to produce very stable materials not just resistant to heat and steam but also to chemical attacks Avelino Corma Canos was born in Moncofar, Spain, in 1951 He studied chemistry at the Universidad de Valencia (1967−1973) and received his PhD at the Universidad Complutense de Madrid in 1976 He became director of the Instituto de Tecnologia Quimica (UPV-CSIC) at the Universidad Politecnica de Valencia in 1990 His current research field is zeolites as catalysts, covering aspects of synthesis, characterization and reactivity in acid−base and redox catalysis A Corma has written about 250 articles on these subjects in international journals, three books, and a number of reviews and book chapters He is a member of the Editorial Board of Zeolites, Catalysis Review Science and Engineering, Catalysis Letters, Applied Catalysis, Journal of Molecular Catalysis, Research Trends, CaTTech, and Journal of the Chemical Society, Chemical Communications A Corma is coauthor of 20 patents, five of them being for commercial applications He has been awarded with the Dupont Award on new materials (1995), and the Spanish National Award “Leonardo Torres Quevedo” on Technology Research (1996) 2373 Chem Rev 1997, 97, 2373−2419

5,290 citations

Journal ArticleDOI
20 Jun 2002-Nature
TL;DR: The past decade has seen significant advances in the ability to fabricate new porous solids with ordered structures from a wide range of different materials, which has resulted in materials with unusual properties and broadened their application range beyond the traditional use as catalysts and adsorbents.
Abstract: "Space—the final frontier." This preamble to a well-known television series captures the challenge encountered not only in space travel adventures, but also in the field of porous materials, which aims to control the size, shape and uniformity of the porous space and the atoms and molecules that define it. The past decade has seen significant advances in the ability to fabricate new porous solids with ordered structures from a wide range of different materials. This has resulted in materials with unusual properties and broadened their application range beyond the traditional use as catalysts and adsorbents. In fact, porous materials now seem set to contribute to developments in areas ranging from microelectronics to medical diagnosis.

4,599 citations