scispace - formally typeset
Search or ask a question
Author

Tian Jun

Bio: Tian Jun is an academic researcher. The author has contributed to research in topics: Digital watermarking & Watermark. The author has an hindex of 1, co-authored 1 publications receiving 152 citations.

Papers
More filters
01 Jan 2002
TL;DR: A high capacity and high quality reversible watermarking method based on difference expansion that does not need to compress original values of the embedding area and explores the redundancy in the digital content to achieve reversibility.
Abstract: Reversible watermark has drawn lots of interest recently. Different from other types of digital watermarks, a reversible watermark has a special feature that the original digital content can be completely restored. In this paper we describe a high capacity and high quality reversible watermarking method based on difference expansion. A noticeable difference between our method and others is that we do not need to compress original values of the embedding area. We explore the redundancy in the digital content to achieve reversibility.

155 citations


Cited by
More filters
Book
24 Oct 2001
TL;DR: Digital Watermarking covers the crucial research findings in the field and explains the principles underlying digital watermarking technologies, describes the requirements that have given rise to them, and discusses the diverse ends to which these technologies are being applied.
Abstract: Digital watermarking is a key ingredient to copyright protection. It provides a solution to illegal copying of digital material and has many other useful applications such as broadcast monitoring and the recording of electronic transactions. Now, for the first time, there is a book that focuses exclusively on this exciting technology. Digital Watermarking covers the crucial research findings in the field: it explains the principles underlying digital watermarking technologies, describes the requirements that have given rise to them, and discusses the diverse ends to which these technologies are being applied. As a result, additional groundwork is laid for future developments in this field, helping the reader understand and anticipate new approaches and applications.

2,849 citations

Journal ArticleDOI
TL;DR: The redundancy in digital images is explored to achieve very high embedding capacity, and keep the distortion low, in a novel reversible data-embedding method for digital images.
Abstract: Reversible data embedding has drawn lots of interest recently Being reversible, the original digital content can be completely restored We present a novel reversible data-embedding method for digital images We explore the redundancy in digital images to achieve very high embedding capacity, and keep the distortion low

2,739 citations

Journal ArticleDOI
TL;DR: Results indicate that the spatial, quad-based algorithm developed for color images allows for hiding the largest payload at the highest signal-to-noise ratio.
Abstract: A reversible watermarking algorithm with very high data-hiding capacity has been developed for color images. The algorithm allows the watermarking process to be reversed, which restores the exact original image. The algorithm hides several bits in the difference expansion of vectors of adjacent pixels. The required general reversible integer transform and the necessary conditions to avoid underflow and overflow are derived for any vector of arbitrary length. Also, the potential payload size that can be embedded into a host image is discussed, and a feedback system for controlling this size is developed. In addition, to maximize the amount of data that can be hidden into an image, the embedding algorithm can be applied recursively across the color components. Simulation results using spatial triplets, spatial quads, cross-color triplets, and cross-color quads are presented and compared with the existing reversible watermarking algorithms. These results indicate that the spatial, quad-based algorithm allows for hiding the largest payload at the highest signal-to-noise ratio.

1,149 citations

Journal ArticleDOI
TL;DR: This paper proposes a new reversible method based on MSB (most significant bit) prediction with a very high capacity, which is better than current state of the art methods, both in terms of reconstructed image quality and embedding capacity.
Abstract: Reversible data hiding in encrypted images (RDHEI) is an effective technique to embed data in the encrypted domain. An original image is encrypted with a secret key and during or after its transmission, it is possible to embed additional information in the encrypted image, without knowing the encryp-tion key or the original content of the image. During the decoding process, the secret message can be extracted and the original image can be reconstructed. In the last few years, RDHEI has started to draw research interest. Indeed, with the development of cloud computing, data privacy has become a real issue. However, none of the existing methods allow us to hide a large amount of information in a reversible manner. In this paper, we propose a new reversible method based on MSB (most significant bit) prediction with a very high capacity. We present two approaches, these are: high capacity reversible data hiding approach with correction of prediction errors and high capacity reversible data hiding approach with embedded prediction errors. With this method, regardless of the approach used, our results are better than those obtained with current state of the art methods, both in terms of reconstructed image quality and embedding capacity.

258 citations

Journal ArticleDOI
TL;DR: A survey and a comparison of emerging techniques for image authentication, that is strict or selective authentication, tamper detection, localization and reconstruction capabilities and robustness against different desired image processing operations are presented.
Abstract: Image authentication techniques have recently gained great attention due to its importance for a large number of multimedia applications. Digital images are increasingly transmitted over non-secure channels such as the Internet. Therefore, military, medical and quality control images must be protected against attempts to manipulate them; such manipulations could tamper the decisions based on these images. To protect the authenticity of multimedia images, several approaches have been proposed. These approaches include conventional cryptography, fragile and semi-fragile watermarking and digital signatures that are based on the image content. The aim of this paper is to present a survey and a comparison of emerging techniques for image authentication. Methods are classified according to the service they provide, that is strict or selective authentication, tamper detection, localization and reconstruction capabilities and robustness against different desired image processing operations. Furthermore, we introduce the concept of image content and discuss the most important requirements for an effective image authentication system design. Different algorithms are described and we focus on their comparison according to the properties cited above.

180 citations