scispace - formally typeset
Search or ask a question
Author

Tian Le Xu

Bio: Tian Le Xu is an academic researcher from Shanghai Jiao Tong University. The author has contributed to research in topics: Acid-sensing ion channel & Glycine receptor. The author has an hindex of 22, co-authored 37 publications receiving 1801 citations. Previous affiliations of Tian Le Xu include Chinese Academy of Sciences & University of Science and Technology of China.

Papers
More filters
Journal ArticleDOI
23 Nov 2005-Neuron
TL;DR: It is shown that ischemia enhances ASIC currents through the phosphorylation at Ser478 and Ser479 of ASIC1a, leading to exacerbated ischemic cell death, and specific blockade of NMDAR/CaMKII-ASIC coupling may reduce neuronal death after ischemIA and other pathological conditions involving excessive glutamate release and acidosis.

301 citations

Journal ArticleDOI
TL;DR: The idea that the ASICs of dorsal horn neurons participate in central sensory transmission/modulation under physiological conditions and may play important roles in inflammation-related persistent pain is supported.

174 citations

Journal ArticleDOI
TL;DR: The results reveal that increased ASIC activity in SDH neurons promotes pain by central sensitization, and specific blockade of Ca2+-permeable ASIC1a channels thus may have antinociceptive effect by reducing or preventing the development ofcentral sensitization induced by inflammation.
Abstract: Development of chronic pain involves alterations in peripheral nociceptors as well as elevated neuronal activity in multiple regions of the CNS. Previous pharmacological and behavioral studies suggest that peripheral acid-sensing ion channels (ASICs) contribute to pain sensation, and the expression of ASIC subunits is elevated in the rat spinal dorsal horn (SDH) in an inflammatory pain model. However, the cellular distribution and the functional consequence of increased ASIC subunit expression in the SDH remain unclear. Here, we identify the Ca2+-permeable, homomeric ASIC1a channels as the predominant ASICs in rat SDH neurons and downregulation of ASIC1a by local rat spinal infusion with specific inhibitors or antisense oligonucleotides markedly attenuated complete Freund's adjuvant (CFA)-induced thermal and mechanical hypersensitivity. Moreover, in vivo electrophysiological recording showed that the elevated ASIC1a activity is required for two forms of central sensitization: C-fiber-induced “wind-up” and CFA-induced hypersensitivity of SDH nociceptive neurons. Together, our results reveal that increased ASIC activity in SDH neurons promotes pain by central sensitization. Specific blockade of Ca2+-permeable ASIC1a channels thus may have antinociceptive effect by reducing or preventing the development of central sensitization induced by inflammation.

155 citations

Journal ArticleDOI
TL;DR: It is shown that extracellular spermine contributes significantly to ischemic neuronal injury through enhancing ASIC1a activity, and suggests new neuroprotective strategies for stroke patients via inhibition of polyamine synthesis and subsequent s permine–ASIC interaction.
Abstract: Ischemic brain injury is a major problem associated with stroke. It has been increasingly recognized that acid-sensing ion channels (ASICs) contribute significantly to ischemic neuronal damage, but the underlying mechanism has remained elusive. Here, we show that extracellular spermine, one of the endogenous polyamines, exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. Pharmacological blockade of ASIC1a or deletion of the ASIC1 gene greatly reduces the enhancing effect of spermine in ischemic neuronal damage both in cultures of dissociated neurons and in a mouse model of focal ischemia. Mechanistically, spermine profoundly reduces desensitization of ASIC1a by slowing down desensitization in the open state, shifting steady-state desensitization to more acidic pH, and accelerating recovery between repeated periods of acid stimulation. Spermine-mediated potentiation of ASIC1a activity is occluded by PcTX1 (psalmotoxin 1), a specific ASIC1a inhibitor binding to its extracellular domain. Functionally, the enhanced channel activity is accompanied by increased acid-induced neuronal membrane depolarization and cytoplasmic Ca(2+) overload, which may partially explain the exacerbated neuronal damage caused by spermine. More importantly, blocking endogenous spermine synthesis significantly attenuates ischemic brain injury mediated by ASIC1a but not that by NMDA receptors. Thus, extracellular spermine contributes significantly to ischemic neuronal injury through enhancing ASIC1a activity. Our data suggest new neuroprotective strategies for stroke patients via inhibition of polyamine synthesis and subsequent spermine-ASIC interaction.

134 citations

Journal ArticleDOI
TL;DR: SP600125, a new inhibitor of JNK, protected transient brain ischemia/reperfusion-induced neuronal death in rat hippocampal CA1 region at least via suppressing the activation of nuclear substrate (c-Jun) and inactivating non-nuclear substrate (Bcl-2) induced by ischemic insult.

132 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal Article
TL;DR: In this paper, an archaeal light-driven chloride pump (NpHR) was developed for temporally precise optical inhibition of neural activity, allowing either knockout of single action potentials, or sustained blockade of spiking.
Abstract: Our understanding of the cellular implementation of systems-level neural processes like action, thought and emotion has been limited by the availability of tools to interrogate specific classes of neural cells within intact, living brain tissue. Here we identify and develop an archaeal light-driven chloride pump (NpHR) from Natronomonas pharaonis for temporally precise optical inhibition of neural activity. NpHR allows either knockout of single action potentials, or sustained blockade of spiking. NpHR is compatible with ChR2, the previous optical excitation technology we have described, in that the two opposing probes operate at similar light powers but with well-separated action spectra. NpHR, like ChR2, functions in mammals without exogenous cofactors, and the two probes can be integrated with calcium imaging in mammalian brain tissue for bidirectional optical modulation and readout of neural activity. Likewise, NpHR and ChR2 can be targeted together to Caenorhabditis elegans muscle and cholinergic motor neurons to control locomotion bidirectionally. NpHR and ChR2 form a complete system for multimodal, high-speed, genetically targeted, all-optical interrogation of living neural circuits.

1,520 citations

Journal ArticleDOI
TL;DR: There are currently no pharmacological interventions capable of providing significant neuroprotection in the clinical setting of brain ischaemia or injury, and this review addresses the current state of excitotoxic research.
Abstract: Glutamate excitotoxicity is a hypothesis that states excessive glutamate causes neuronal dysfunction and degeneration. As glutamate is a major excitatory neurotransmitter in the central nervous system (CNS), the implications of glutamate excitotoxicity are many and far-reaching. Acute CNS insults such as ischaemia and traumatic brain injury have traditionally been the focus of excitotoxicity research. However, glutamate excitotoxicity has also been linked to chronic neurodegenerative disorders such as amyotrophic lateral sclerosis, multiple sclerosis, Parkinson’s disease and others. Despite the continued research into the mechanisms of excitotoxicity, there are currently no pharmacological interventions capable of providing significant neuroprotection in the clinical setting of brain ischaemia or injury. This review addresses the current state of excitotoxic research, focusing on the structure and physiology of glutamate receptors; molecular mechanisms underlying excitotoxic cell death pathways and their interactions with each other; the evidence for glutamate excitotoxicity in acute neurologic diseases; laboratory and clinical attempts at modulating excitotoxicity; and emerging targets for excitotoxicity research.

986 citations

Journal ArticleDOI
TL;DR: Since GlyRs are involved in motor reflex circuits of the spinal cord and provide inhibitory synapses onto pain sensory neurons, these agents may provide lead compounds for the development of muscle relaxant and peripheral analgesic drugs.
Abstract: The glycine receptor chloride channel (GlyR) is a member of the nicotinic acetylcholine receptor family of ligand-gated ion channels. Functional receptors of this family comprise five subunits and ...

709 citations