scispace - formally typeset
Search or ask a question
Author

Tiangang Zhuang

Bio: Tiangang Zhuang is an academic researcher from Children's Hospital of Philadelphia. The author has contributed to research in topics: Heme oxygenase & Hyperoxia. The author has an hindex of 4, co-authored 4 publications receiving 136 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Feed-forward autoregulation of HO-1 in oxidative stress is documented and it is suggested thatHO-1 protein has a role in the induction process and may also serve to up-regulate other genes to promote cytoprotection and to modulate cell proliferation.

67 citations

Journal ArticleDOI
TL;DR: Disruption of heme oxygenase (HO)-1 may enhance hnRNPK-mediated inhibition of protein translation and subsequently impair the β-catenin/hnR NPK regulated gene expression required for coordinated lung repair and regeneration.
Abstract: In the newborn, alveolarization continues postnatally and can be disrupted by hyperoxia, leading to long-lasting consequences on lung function. We wanted to better understand the role of heme oxygenase (HO)-1, the inducible form of the rate-limiting enzyme in heme degradation, in neonatal hyperoxic lung injury and repair. Although it was not observed after 3 days of hyperoxia alone, when exposed to hyperoxia and allowed to recover in air (O2/air recovered), neonatal HO-1 knockout (KO) mice had enlarged alveolar spaces and increased lung apoptosis as well as decreased lung protein translation and dysregulated gene expression in the recovery phase of the injury. Associated with these changes, KO had sustained low levels of active β-catenin and lesser lung nuclear heterogeneous nuclear ribonucleoprotein K (hnRNPK) protein levels, whereas lung nuclear hnRNPK was increased in transgenic mice over-expressing nuclear HO-1. Disruption of HO-1 may enhance hnRNPK-mediated inhibition of protein translation and subsequently impair the β-catenin/hnRNPK regulated gene expression required for coordinated lung repair and regeneration.

35 citations

Journal ArticleDOI
TL;DR: A unique pathway of NF-kappaB activation in fetal lung fibroblasts after exposure to hyperoxia is demonstrated, whereby these cells are protected against apoptosis, resulting in aberrant lung morphology in vivo.
Abstract: NF-κB activation is exaggerated in neonatal organisms after oxidant and inflammatory insults, but the reason for this and the downstream effects are unclear. We hypothesized that specific phosphory...

27 citations

Journal ArticleDOI
TL;DR: It is demonstrated thatHO-1 is required in normal lung development and that HO-1 disruption and dexamethasone exposure are additive in the disruption of postnatal lung growth.
Abstract: Heme oxygenase (HO) degrades cellular heme to carbon monoxide, iron and biliverdin. The HO-1 isoform is both inducible and cyto-protective during oxidative stress, inflammation and lung injury. However, little is known about its precise role and function in lung development. We hypothesized that HO-1 is required for mouse postnatal lung alveolar development and that vascular expression of HO-1 is essential and protective during postnatal alveolar development. Neonatal lung development in wildtype and HO-1 mutant mice was evaluated by histological and molecular methods. Furthermore, these newborn mice were treated with postnatal dexamethasone (Dex) till postnatal 14 days, and evaluated for lung development. Compared to wildtype littermates, HO-1 mutant mice exhibited disrupted lung alveolar structure including simplification, disorganization and reduced secondary crest formation. These defects in alveolar development were more pronounced when these mice were challenged with Dex treatment. Expression levels of both vascular endothelial and alveolar epithelial markers were also further decreased in HO-1 mutants after Dex treatment. These experiments demonstrate that HO-1 is required in normal lung development and that HO-1 disruption and dexamethasone exposure are additive in the disruption of postnatal lung growth. We speculate that HO-1 is involved in postnatal lung development through modulation of pulmonary vascular development.

17 citations


Cited by
More filters
Journal ArticleDOI
07 Apr 2011-Oncogene
TL;DR: Multiple mechanisms of NF-κB activation and their regulation by multitargeted agent in contrast to monotargeted agents are discussed, thus ‘one size does not fit all’ cancers.
Abstract: Activation of nuclear factor (NF)-κB, one of the most investigated transcription factors, has been found to control multiple cellular processes in cancer including inflammation, transformation, proliferation, angiogenesis, invasion, metastasis, chemoresistance and radioresistance. NF-κB is constitutively active in most tumor cells, and its suppression inhibits the growth of tumor cells, leading to the concept of 'NF-κB addiction' in cancer cells. Why NF-κB is constitutively and persistently active in cancer cells is not fully understood, but multiple mechanisms have been delineated including agents that activate NF-κB (such as viruses, viral proteins, bacteria and cytokines), signaling intermediates (such as mutant receptors, overexpression of kinases, mutant oncoproteins, degradation of IκBα, histone deacetylase, overexpression of transglutaminase and iNOS) and cross talk between NF-κB and other transcription factors (such as STAT3, HIF-1α, AP1, SP, p53, PPARγ, β-catenin, AR, GR and ER). As NF-κB is 'pre-active' in cancer cells through unrelated mechanisms, classic inhibitors of NF-κB (for example, bortezomib) are unlikely to mediate their anticancer effects through suppression of NF-κB. This review discusses multiple mechanisms of NF-κB activation and their regulation by multitargeted agents in contrast to monotargeted agents, thus 'one size does not fit all' cancers.

424 citations

Journal ArticleDOI
TL;DR: Findings suggest that a potential intervention on HO-1 or its byproducts may need to take into account any potential alteration in the status of Nrf2 activation, as well as the potential pathways and mechanisms mediating vascular protection.
Abstract: Atherosclerosis is an inflammatory process of the vascular wall characterized by the infiltration of lipids and inflammatory cells. Oxidative modifications of infiltrating low-density lipoproteins and induction of oxidative stress play a major role in lipid retention in the vascular wall, uptake by macrophages and generation of foam cells, a hallmark of this disorder. The vasculature has a plethora of protective resources against oxidation and inflammation, many of them regulated by the Nrf2 transcription factor. Heme oxygenase-1 (HO-1) is a Nrf2-regulated gene that plays a critical role in the prevention of vascular inflammation. It is the inducible isoform of HO, responsible for the oxidative cleavage of heme groups leading to the generation of biliverdin, carbon monoxide, and release of ferrous iron. HO-1 has important antioxidant, antiinflammatory, antiapoptotic, antiproliferative, and immunomodulatory effects in vascular cells, most of which play a significant role in the protection against atherogenesis. HO-1 may also be an important feature in macrophage differentiation and polarization to certain subtypes. The biological effects of HO-1 are largely attributable to its enzymatic activity, which can be conceived as a system with three arms of action, corresponding to its three enzymatic byproducts. HO-1 mediated vascular protection may be due to a combination of systemic and vascular local effects. It is usually expressed at low levels but can be highly upregulated in the presence of several proatherogenic stimuli. The HO-1 system is amenable for use in the development of new therapies, some of them currently under experimental and clinical trials. Interestingly, in contrast to the HO-1 antiatherogenic actions, the expression of its transcriptional regulator Nrf2 leads to proatherogenic effects instead. This suggests that a potential intervention on HO-1 or its byproducts may need to take into account any potential alteration in the status of Nrf2 activation. This article reviews the available evidence that supports the antiatherogenic role of HO-1 as well as the potential pathways and mechanisms mediating vascular protection.

339 citations

Journal ArticleDOI
TL;DR: In ‘stressed’ astroglia, HO‐1 hyperactivity promotes mitochondrial sequestration of non‐transferrin iron and macroautophagy and may thereby contribute to the pathological iron deposition and bioenergetic failure amply documented in Alzheimer disease, Parkinson disease and other aging‐related neurodegenerative disorders.
Abstract: The heme oxygenases (HOs), responsible for the degradation of heme to biliverdin/bilirubin, free iron and CO, have been heavily implicated in mammalian CNS aging and disease. In normal brain, the expression of HO-2 is constitutive, abundant and fairly ubiquitous, whereas HO-1 mRNA and protein are confined to small populations of scattered neurons and neuroglia. In contradistinction to HO-2, the ho-1 gene (Hmox1) is exquisitely sensitive to induction by a wide range of pro-oxidant and other stressors. In Alzheimer disease and mild cognitive impairment, immunoreactive HO-1 protein is over-expressed in neurons and astrocytes of the cerebral cortex and hippocampus relative to age-matched, cognitively intact controls and co-localizes to senile plaques, neurofibrillary tangles, and corpora amylacea. In Parkinson disease, HO-1 is markedly over-expressed in astrocytes of the substantia nigra and decorates Lewy bodies in affected dopaminergic neurons. HMOX1 is also up-regulated in glial cells surrounding human cerebral infarcts, hemorrhages and contusions, within multiple sclerosis plaques, and in other degenerative and inflammatory human CNS disorders. Heme-derived free ferrous iron, CO, and biliverdin/bilirubin are biologically active substances that have been shown to either ameliorate or exacerbate neural injury contingent upon specific disease models employed, the intensity and duration of HO-1 expression and the nature of the prevailing redox microenvironment. In ‘stressed’ astroglia, HO-1 hyperactivity promotes mitochondrial sequestration of non-transferrin iron and macroautophagy and may thereby contribute to the pathological iron deposition and bioenergetic failure amply documented in Alzheimer disease, Parkinson disease and other aging-related neurodegenerative disorders. Glial HO-1 expression may also impact cell survival and neuroplasticity in these conditions by modulating brain sterol metabolism and proteosomal degradation of neurotoxic protein aggregates.

249 citations

Journal ArticleDOI
TL;DR: Measurement of the reactive oxygen species and other markers of oxidative stress, including the levels of the antioxidant enzymes catalase and superoxide dismutase, can provide valuable information on the extent of oxidative Stress and might guide therapeutic management strategies.
Abstract: Varicocele is recognized as the leading cause of male infertility because it can impair spermatogenesis through several distinct pathophysiological mechanisms. Current evidence supports oxidative stress as a key element in the pathophysiology of varicocele-related infertility, although these mechanisms have not yet been fully described. Measurement of the reactive oxygen species and other markers of oxidative stress, including the levels of the antioxidant enzymes catalase and superoxide dismutase, can provide valuable information on the extent of oxidative stress and might guide therapeutic management strategies. The testis can respond to varicocele-associated cell stressors, such as heat stress, ischaemia or production of vasodilators (for example, nitric oxide) at the expense of the generation of excessive reactive oxygen species. These responses have their own implications in exacerbating the underlying oxidative stress and on the subsequent infertility.

235 citations

Journal ArticleDOI
TL;DR: In oxidative stress, nuclear HO-1 interacts with Nrf2 and stabilizes it from glycogen synthase kinase 3β (GSK3β)-mediated phosphorylation coupled with ubiquitin-proteasomal degradation, thereby prolonging its accumulation in the nucleus.

189 citations