scispace - formally typeset
Search or ask a question
Author

Tianquan Zhu

Bio: Tianquan Zhu is an academic researcher from University of Michigan. The author has contributed to research in topics: Protein kinase B & PI3K/AKT/mTOR pathway. The author has an hindex of 2, co-authored 3 publications receiving 2981 citations.

Papers
More filters
Journal ArticleDOI
Ken Inoki1, Yong Li1, Tianquan Zhu1, Jun Wu1, Kun-Liang Guan1 
TL;DR: It is shown that TSC1–TSC2 inhibits the p70 ribosomal protein S6 kinase 1 and activates the eukaryotic initiation factor 4E binding protein 1 (4E-BP1, an inhibitor of translational initiation) and these functions are mediated by inhibition of the mammalian target of rapamycin (mTOR).
Abstract: Tuberous sclerosis (TSC) is an autosomal dominant disorder characterized by the formation of hamartomas in a wide range of human tissues. Mutation in either the TSC1 or TSC2 tumour suppressor gene is responsible for both the familial and sporadic forms of this disease. TSC1 and TSC2 proteins form a physical and functional complex in vivo. Here, we show that TSC1-TSC2 inhibits the p70 ribosomal protein S6 kinase 1 (an activator of translation) and activates the eukaryotic initiation factor 4E binding protein 1 (4E-BP1, an inhibitor of translational initiation). These functions of TSC1-TSC2 are mediated by inhibition of the mammalian target of rapamycin (mTOR). Furthermore, TSC2 is directly phosphorylated by Akt, which is involved in stimulating cell growth and is activated by growth stimulating signals, such as insulin. TSC2 is inactivated by Akt-dependent phosphorylation, which destabilizes TSC2 and disrupts its interaction with TSC1. Our data indicate a molecular mechanism for TSC2 in insulin signalling, tumour suppressor functions and in the inhibition of cell growth.

2,889 citations

Journal ArticleDOI
TL;DR: It is demonstrated that B-Raf activity can be negatively regulated by Akt through phosphorylation in the amino-terminal regulatory domain of B- Raf, which is likely to play an important role in modulating the signaling specificity of the Ras/Raf pathway and in promoting biological outcome.

269 citations


Cited by
More filters
01 Apr 2012
TL;DR: The mechanistic target of rapamycin (mTOR) signaling pathway senses and integrates a variety of environmental cues to regulate organismal growth and homeostasis as mentioned in this paper, and is implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes, and neurodegeneration.
Abstract: The mechanistic target of rapamycin (mTOR) signaling pathway senses and integrates a variety of environmental cues to regulate organismal growth and homeostasis. The pathway regulates many major cellular processes and is implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes, and neurodegeneration. Here, we review recent advances in our understanding of the mTOR pathway and its role in health, disease, and aging. We further discuss pharmacological approaches to treat human pathologies linked to mTOR deregulation.

6,268 citations

Journal ArticleDOI
13 Apr 2012-Cell
TL;DR: Recent advances in understanding of the mTOR pathway are reviewed and pharmacological approaches to treat human pathologies linked to mTOR deregulation are discussed.

5,792 citations

Journal ArticleDOI
29 Jun 2007-Cell
TL;DR: Those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration are discussed.

5,505 citations

Journal ArticleDOI
TL;DR: A molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1, is demonstrated and a signalling mechanism for UlK1 regulation and autophagic induction in response to nutrient signalling is revealed.
Abstract: Autophagy is a process by which components of the cell are degraded to maintain essential activity and viability in response to nutrient limitation. Extensive genetic studies have shown that the yeast ATG1 kinase has an essential role in autophagy induction. Furthermore, autophagy is promoted by AMP activated protein kinase (AMPK), which is a key energy sensor and regulates cellular metabolism to maintain energy homeostasis. Conversely, autophagy is inhibited by the mammalian target of rapamycin (mTOR), a central cell-growth regulator that integrates growth factor and nutrient signals. Here we demonstrate a molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1. Under glucose starvation, AMPK promotes autophagy by directly activating Ulk1 through phosphorylation of Ser 317 and Ser 777. Under nutrient sufficiency, high mTOR activity prevents Ulk1 activation by phosphorylating Ulk1 Ser 757 and disrupting the interaction between Ulk1 and AMPK. This coordinated phosphorylation is important for Ulk1 in autophagy induction. Our study has revealed a signalling mechanism for Ulk1 regulation and autophagy induction in response to nutrient signalling.

5,314 citations

Journal ArticleDOI
09 Mar 2017-Cell
TL;DR: Recent advances in understanding of mTOR function, regulation, and importance in mammalian physiology are reviewed and how the mTOR signaling network contributes to human disease is highlighted.

4,719 citations