scispace - formally typeset
Search or ask a question
Author

Tiejun Zhao

Bio: Tiejun Zhao is an academic researcher from Harbin Institute of Technology. The author has contributed to research in topics: Machine translation & Computer science. The author has an hindex of 19, co-authored 237 publications receiving 2633 citations. Previous affiliations of Tiejun Zhao include National Institute of Information and Communications Technology.


Papers
More filters
Proceedings Article
Long Jiang1, Mo Yu2, Ming Zhou1, Xiaohua Liu1, Tiejun Zhao2 
19 Jun 2011
TL;DR: This paper proposes to improve target-dependent Twitter sentiment classification by incorporating target- dependent features; and taking related tweets into consideration; and according to the experimental results, this approach greatly improves the performance of target- dependence sentiment classification.
Abstract: Sentiment analysis on Twitter data has attracted much attention recently. In this paper, we focus on target-dependent Twitter sentiment classification; namely, given a query, we classify the sentiments of the tweets as positive, negative or neutral according to whether they contain positive, negative or neutral sentiments about that query. Here the query serves as the target of the sentiments. The state-of-the-art approaches for solving this problem always adopt the target-independent strategy, which may assign irrelevant sentiments to the given target. Moreover, the state-of-the-art approaches only take the tweet to be classified into consideration when classifying the sentiment; they ignore its context (i.e., related tweets). However, because tweets are usually short and more ambiguous, sometimes it is not enough to consider only the current tweet for sentiment classification. In this paper, we propose to improve target-dependent Twitter sentiment classification by 1) incorporating target-dependent features; and 2) taking related tweets into consideration. According to the experimental results, our approach greatly improves the performance of target-dependent sentiment classification.

911 citations

Proceedings ArticleDOI
01 Jul 2018
TL;DR: Li et al. as discussed by the authors proposed an end-to-end neural network framework for extractive document summarization by jointly learning to score and select sentences, which significantly outperforms the state-of-the-art extractive summarization models.
Abstract: Sentence scoring and sentence selection are two main steps in extractive document summarization systems. However, previous works treat them as two separated subtasks. In this paper, we present a novel end-to-end neural network framework for extractive document summarization by jointly learning to score and select sentences. It first reads the document sentences with a hierarchical encoder to obtain the representation of sentences. Then it builds the output summary by extracting sentences one by one. Different from previous methods, our approach integrates the selection strategy into the scoring model, which directly predicts the relative importance given previously selected sentences. Experiments on the CNN/Daily Mail dataset show that the proposed framework significantly outperforms the state-of-the-art extractive summarization models.

273 citations

Proceedings Article
01 Dec 2016
TL;DR: A novel systematic KBQA approach to solve multi-constraint questions is proposed, which not only obtains comparable results on the two existing benchmark data-sets, but also achieves significant improvements on the ComplexQuestions.
Abstract: WebQuestions and SimpleQuestions are two benchmark data-sets commonly used in recent knowledge-based question answering (KBQA) work. Most questions in them are ‘simple’ questions which can be answered based on a single relation in the knowledge base. Such data-sets lack the capability of evaluating KBQA systems on complicated questions. Motivated by this issue, we release a new data-set, namely ComplexQuestions, aiming to measure the quality of KBQA systems on ‘multi-constraint’ questions which require multiple knowledge base relations to get the answer. Beside, we propose a novel systematic KBQA approach to solve multi-constraint questions. Compared to state-of-the-art methods, our approach not only obtains comparable results on the two existing benchmark data-sets, but also achieves significant improvements on the ComplexQuestions.

191 citations

Proceedings ArticleDOI
01 Jun 2014
TL;DR: A translation-based approach to solve knowledge-based question answering tasks in one unified framework based on CYK parsing, which achieves better results than previous methods.
Abstract: A typical knowledge-based question answering (KB-QA) system faces two challenges: one is to transform natural language questions into their meaning representations (MRs); the other is to retrieve answers from knowledge bases (KBs) using generated MRs. Unlike previous methods which treat them in a cascaded manner, we present a translation-based approach to solve these two tasks in one unified framework. We translate questions to answers based on CYK parsing. Answers as translations of the span covered by each CYK cell are obtained by a question translation method, which first generates formal triple queries as MRs for the span based on question patterns and relation expressions, and then retrieves answers from a given KB based on triple queries generated. A linear model is defined over derivations, and minimum error rate training is used to tune feature weights based on a set of question-answer pairs. Compared to a KB-QA system using a state-of-the-art semantic parser, our method achieves better results.

141 citations

Posted Content
TL;DR: This paper presents a novel end-to-end neural network framework for extractive document summarization by jointly learning to score and select sentences, which significantly outperforms the state-of-the-art extractive summarization models.
Abstract: Sentence scoring and sentence selection are two main steps in extractive document summarization systems. However, previous works treat them as two separated subtasks. In this paper, we present a novel end-to-end neural network framework for extractive document summarization by jointly learning to score and select sentences. It first reads the document sentences with a hierarchical encoder to obtain the representation of sentences. Then it builds the output summary by extracting sentences one by one. Different from previous methods, our approach integrates the selection strategy into the scoring model, which directly predicts the relative importance given previously selected sentences. Experiments on the CNN/Daily Mail dataset show that the proposed framework significantly outperforms the state-of-the-art extractive summarization models.

69 citations


Cited by
More filters
Book
01 May 2012
TL;DR: Sentiment analysis and opinion mining is the field of study that analyzes people's opinions, sentiments, evaluations, attitudes, and emotions from written language as discussed by the authors and is one of the most active research areas in natural language processing and is also widely studied in data mining, Web mining, and text mining.
Abstract: Sentiment analysis and opinion mining is the field of study that analyzes people's opinions, sentiments, evaluations, attitudes, and emotions from written language. It is one of the most active research areas in natural language processing and is also widely studied in data mining, Web mining, and text mining. In fact, this research has spread outside of computer science to the management sciences and social sciences due to its importance to business and society as a whole. The growing importance of sentiment analysis coincides with the growth of social media such as reviews, forum discussions, blogs, micro-blogs, Twitter, and social networks. For the first time in human history, we now have a huge volume of opinionated data recorded in digital form for analysis. Sentiment analysis systems are being applied in almost every business and social domain because opinions are central to almost all human activities and are key influencers of our behaviors. Our beliefs and perceptions of reality, and the choices we make, are largely conditioned on how others see and evaluate the world. For this reason, when we need to make a decision we often seek out the opinions of others. This is true not only for individuals but also for organizations. This book is a comprehensive introductory and survey text. It covers all important topics and the latest developments in the field with over 400 references. It is suitable for students, researchers and practitioners who are interested in social media analysis in general and sentiment analysis in particular. Lecturers can readily use it in class for courses on natural language processing, social media analysis, text mining, and data mining. Lecture slides are also available online.

4,515 citations

Journal ArticleDOI

3,181 citations

Book ChapterDOI
03 Jun 2018
TL;DR: It is shown that factorization models for link prediction such as DistMult can be significantly improved through the use of an R-GCN encoder model to accumulate evidence over multiple inference steps in the graph, demonstrating a large improvement of 29.8% on FB15k-237 over a decoder-only baseline.
Abstract: Knowledge graphs enable a wide variety of applications, including question answering and information retrieval. Despite the great effort invested in their creation and maintenance, even the largest (e.g., Yago, DBPedia or Wikidata) remain incomplete. We introduce Relational Graph Convolutional Networks (R-GCNs) and apply them to two standard knowledge base completion tasks: Link prediction (recovery of missing facts, i.e. subject-predicate-object triples) and entity classification (recovery of missing entity attributes). R-GCNs are related to a recent class of neural networks operating on graphs, and are developed specifically to handle the highly multi-relational data characteristic of realistic knowledge bases. We demonstrate the effectiveness of R-GCNs as a stand-alone model for entity classification. We further show that factorization models for link prediction such as DistMult can be significantly improved through the use of an R-GCN encoder model to accumulate evidence over multiple inference steps in the graph, demonstrating a large improvement of 29.8% on FB15k-237 over a decoder-only baseline.

3,168 citations

01 Jan 2006

3,012 citations

Proceedings ArticleDOI
01 Jun 2014
TL;DR: Three neural networks are developed to effectively incorporate the supervision from sentiment polarity of text (e.g. sentences or tweets) in their loss functions and the performance of SSWE is improved by concatenating SSWE with existing feature set.
Abstract: We present a method that learns word embedding for Twitter sentiment classification in this paper. Most existing algorithms for learning continuous word representations typically only model the syntactic context of words but ignore the sentiment of text. This is problematic for sentiment analysis as they usually map words with similar syntactic context but opposite sentiment polarity, such as good and bad, to neighboring word vectors. We address this issue by learning sentimentspecific word embedding (SSWE), which encodes sentiment information in the continuous representation of words. Specifically, we develop three neural networks to effectively incorporate the supervision from sentiment polarity of text (e.g. sentences or tweets) in their loss functions. To obtain large scale training corpora, we learn the sentiment-specific word embedding from massive distant-supervised tweets collected by positive and negative emoticons. Experiments on applying SSWE to a benchmark Twitter sentiment classification dataset in SemEval 2013 show that (1) the SSWE feature performs comparably with hand-crafted features in the top-performed system; (2) the performance is further improved by concatenating SSWE with existing feature set.

1,157 citations