scispace - formally typeset
Search or ask a question
Author

Tiina Nygård

Bio: Tiina Nygård is an academic researcher from Finnish Meteorological Institute. The author has contributed to research in topics: Radiosonde & Arctic. The author has an hindex of 11, co-authored 18 publications receiving 378 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reviewed, synthesized, and discussed the recent advances in understanding small-scale physical processes in the atmosphere, sea ice, and ocean, including wave-turbulence interactions and the exchange of heat and salt at the ice-ocean interface.
Abstract: . The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007–2009, significant advances have been made in understanding these processes. Here, these recent advances are reviewed, synthesized, and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal, and fjordic processes as well as in boundary layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of superimposed ice and snow ice, and the small-scale dynamics of sea ice. For the ocean, significant advances have been related to exchange processes at the ice–ocean interface, diapycnal mixing, double-diffusive convection, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave–turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice–ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but the challenge is to understand their interactions with and impacts and feedbacks on other processes. Uncertainty in the parameterization of small-scale processes continues to be among the greatest challenges facing climate modelling, particularly in high latitudes. Further improvements in parameterization require new year-round field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments.

158 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the climatology and characteristics of humidity inversions in the Arctic, including their spatial and temporal variability, sensitivity to the methodology applied and differences from the Antarctic humidity inversion.
Abstract: . Humidity inversions have a high potential importance in the Arctic climate system, especially for cloud formation and maintenance, in wide spatial and temporal scales. Here we investigate the climatology and characteristics of humidity inversions in the Arctic, including their spatial and temporal variability, sensitivity to the methodology applied and differences from the Antarctic humidity inversions. The study is based on data of the Integrated Global Radiosonde Archive (IGRA) from 36 Arctic stations between the years 2000 and 2009. The results indicate that humidity inversions are present on multiple levels nearly all the time in the Arctic atmosphere. Almost half (48%) of the humidity inversions were found at least partly within the same vertical layer with temperature inversions, whereas the existence of the other half may, at least partly, be linked to uneven vertical distribution of horizontal moisture transport. A high atmospheric surface pressure was found to increase the humidity inversion occurrence, whereas relationships between humidity inversion properties and cloud cover were generally relatively weak, although for some inversion properties they were systematic. For example, humidity inversions occurred slightly more often and were deeper under clear sky than in overcast conditions for almost all stations. The statistics of Arctic humidity inversion properties, especially inversion strength, depth and base height, proved to be very sensitive to the instruments and methodology applied. For example, the median strength of the strongest inversion in a profile was twice as large as the median of all Arctic inversions. The most striking difference between the Arctic and Antarctic humidity inversions was the much larger range of the seasonal cycle of inversion properties in the Arctic. Our results offer a baseline for validation of weather prediction and climate models and also encourage further studies on humidity inversions due to the vital, but so far poorly understood, role of humidity inversions in Arctic cloud processes.

54 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the Arctic trends of integrated water vapor based on four reanalyses and radiosonde data over 1979-2016 and found that the Arctic experiences a robust mo...
Abstract: Arctic trends of integrated water vapor were analyzed based on four reanalyses and radiosonde data over 1979–2016. Averaged over the region north of 70°N, the Arctic experiences a robust mo...

53 citations

Journal ArticleDOI
TL;DR: In this paper, the horizontal moisture transport has a manifold role in the Arctic climate system as it distributes atmospheric water vapour and thereby shapes the radiative and hydrological conditions.
Abstract: Horizontal moisture transport has a manifold role in the Arctic climate system as it distributes atmospheric water vapour and thereby shapes the radiative and hydrological conditions. Moisture tran ...

37 citations

Journal ArticleDOI
TL;DR: In this article, the occurrence and characteristics of Arctic specific humidity inversions (SHIs) were examined on the basis of two reanalyses (ERA-Interim and JRA-55) and radiosonde sounding data from 2003 to 2014.
Abstract: The occurrence and characteristics of Arctic specific humidity inversions (SHIs) were examined on the basis of two reanalyses (ERA-Interim and JRA-55) and radiosonde sounding data from 2003 to 2014. Based on physical properties, the SHIs were divided into two main categories: SHIs below and above the 800-hPa level. Above the 800-hPa level, SHIs occurred simultaneously with relative humidity inversions and without the presence of a temperature inversion; these SHIs were probably formed when a moist air mass was advected over a dry air mass. SHIs below the 800-hPa level occurred simultaneously with temperature inversions in conditions of high relative humidity, which suggests that condensation had an important role in SHI formation. Below the 800-hPa level, SHI occurrence had a large seasonal and spatial variation, which depended on the surface heat budget. In winter, most SHIs were formed because of surface radiative cooling, and the occurrence of SHIs was high (even exceeding 90% of the time) on c...

32 citations


Cited by
More filters
07 Jan 2013
TL;DR: In this article, the authors analyzed daily fields of 500-hPa heights from the National Centers for Environmental Prediction Reanalysis over N. America and the N. Atlantic to assess changes in north-south (Rossby) wave characteristics associated with Arctic amplification and the relaxation of poleward thickness gradients.
Abstract: [1] Arctic amplification (AA) – the observed enhanced warming in high northern latitudes relative to the northern hemisphere – is evident in lower-tropospheric temperatures and in 1000-to-500 hPa thicknesses. Daily fields of 500 hPa heights from the National Centers for Environmental Prediction Reanalysis are analyzed over N. America and the N. Atlantic to assess changes in north-south (Rossby) wave characteristics associated with AA and the relaxation of poleward thickness gradients. Two effects are identified that each contribute to a slower eastward progression of Rossby waves in the upper-level flow: 1) weakened zonal winds, and 2) increased wave amplitude. These effects are particularly evident in autumn and winter consistent with sea-ice loss, but are also apparent in summer, possibly related to earlier snow melt on high-latitude land. Slower progression of upper-level waves would cause associated weather patterns in mid-latitudes to be more persistent, which may lead to an increased probability of extreme weather events that result from prolonged conditions, such as drought, flooding, cold spells, and heat waves.

1,048 citations

Journal ArticleDOI
TL;DR: A review of the local and remote effects of the sea ice decline on weather and climate is presented in this paper, where it is evident that the reduction in sea ice cover has increased the heat flux from the ocean to atmosphere in autumn and early winter.
Abstract: The areal extent, concentration and thickness of sea ice in the Arctic Ocean and adjacent seas have strongly decreased during the recent decades, but cold, snow-rich winters have been common over mid-latitude land areas since 2005. A review is presented on studies addressing the local and remote effects of the sea ice decline on weather and climate. It is evident that the reduction in sea ice cover has increased the heat flux from the ocean to atmosphere in autumn and early winter. This has locally increased air tempera- ture, moisture, and cloud cover and reduced the static stability in the lower troposphere. Several studies based on observations, atmospheric reanalyses, and model experiments suggest that the sea ice decline, together with increased snow cover in Eurasia, favours circulation patterns resembling the negative phase of the North Atlantic Oscillation and Arctic Oscillation. The suggested large-scale pressure patterns include a high over Eurasia, which favours cold winters in Europe and northeastern Eurasia. A high over the western and a low over the eastern North America have also been suggested, favouring advection of Arctic air masses to North America. Mid-latitude winter weather is, however, affected by several other factors, which generate a large inter-annual variability and often mask the effects of sea ice decline. In addition, the small sample of years with a large sea ice loss makes it difficult to distinguish the effects directly attributable to sea ice conditions. Several studies suggest that, with advancing global warming, cold winters in mid-latitude continents will no longer be common during the second half of the twenty-first century. Recent studies have also suggested causal links between the sea ice decline and summer precipitation in Europe, the Mediterranean, and East Asia.

645 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the present understanding of how heat reaches the ice base from the original sources, and speculates on how such processes may change in the new Arctic.
Abstract: The loss of Arctic sea ice has emerged as a leading signal of global warming. This, together with acknowledged impacts on other components of the Earth system, has led to the term “the new Arctic.” Global coupled climate models predict that ice loss will continue through the twenty-first century, with implications for governance, economics, security, and global weather. A wide range in model projections reflects the complex, highly coupled interactions between the polar atmosphere, ocean, and cryosphere, including teleconnections to lower latitudes. This paper summarizes our present understanding of how heat reaches the ice base from the original sources—inflows of Atlantic and Pacific Water, river discharge, and summer sensible heat and shortwave radiative fluxes at the ocean/ice surface—and speculates on how such processes may change in the new Arctic. The complexity of the coupled Arctic system, and the logistic and technological challenges of working in the Arctic Ocean, require a coordinated ...

230 citations

Journal ArticleDOI
TL;DR: The polar regions have been attracting more and more attention in recent years, fueled by the perceptible impacts of anthropogenic climate change as mentioned in this paper, and it is argued that environmental prediction systems for the polar regions are less developed than elsewhere.
Abstract: The polar regions have been attracting more and more attention in recent years, fueled by the perceptible impacts of anthropogenic climate change. Polar climate change provides new opportunities, such as shorter shipping routes between Europe and East Asia, but also new risks such as the potential for industrial accidents or emergencies in ice-covered seas. Here, it is argued that environmental prediction systems for the polar regions are less developed than elsewhere. There are many reasons for this situation, including the polar regions being (historically) lower priority, with fewer in situ observations, and with numerous local physical processes that are less well represented by models. By contrasting the relative importance of different physical processes in polar and lower latitudes, the need for a dedicated polar prediction effort is illustrated. Research priorities are identified that will help to advance environmental polar prediction capabilities. Examples include an improvement of the p...

215 citations