scispace - formally typeset
Search or ask a question
Author

Till Rumpf

Bio: Till Rumpf is an academic researcher from University of Bonn. The author has contributed to research in topics: Sugar beet & Powdery mildew. The author has an hindex of 6, co-authored 7 publications receiving 1144 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A procedure for the early detection and differentiation of sugar beet diseases based on Support Vector Machines and spectral vegetation indices to discriminate diseased from non-diseased sugar beet leaves and to identify diseases even before specific symptoms became visible.

666 citations

Journal ArticleDOI
TL;DR: Developing specific spectral disease indices for the detection of diseases in crops will improve disease detection, identification and monitoring in precision agriculture applications.

420 citations

Journal ArticleDOI
TL;DR: A short introduction into machine learning is given, its potential for precision crop protection is analyzed and an overview of instructive examples from different fields of precision agriculture is provided.
Abstract: Effective crop protection requires early and accurate detection of biotic stress. In recent years, remarkable results have been achieved in the early detection of weeds, plant diseases and insect pests in crops. These achievements are related both to the development of non-invasive, high resolution optical sensors and data analysis methods that are able to cope with the resolution, size and complexity of the signals from these sensors. Several methods of machine learning have been utilized for precision agriculture such as support vector machines and neural networks for classification (supervised learning); k-means and self-organizing maps for clustering (unsupervised learning). These methods are able to calculate both linear and non-linear models, require few statistical assumptions and adapt flexibly to a wide range of data characteristics. Successful applications include the early detection of plant diseases based on spectral features and weed detection based on shape descriptors with supervised or unsupervised learning methods. This review gives a short introduction into machine learning, analyses its potential for precision crop protection and provides an overview of instructive examples from different fields of precision agriculture.

251 citations

Journal ArticleDOI
TL;DR: The described method is of general interest for pre-symptomatic pathogen detection based on fluorescence spectra and demonstrated that the achieved classification accuracy could be attained on the second day after inoculation, before any visible symptoms appeared.

77 citations

Journal ArticleDOI
TL;DR: The focus was on the early identification of the two most harmful species Cirsium arvense and Galium aparine, with optimal accuracy than using a non-sequential classification approach.

70 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: Recent advances in field HTPPs are reviewed, which should combine at an affordable cost, high capacity for data recording, scoring and processing, and non-invasive remote sensing methods, together with automated environmental data collection.

1,206 citations

Journal ArticleDOI
TL;DR: The spectral characteristics of vegetation are introduced and the development of VIs are summarized, discussing their specific applicability and representativeness according to the vegetation of interest, environment, and implementation precision.
Abstract: Vegetation Indices (VIs) obtained from remote sensing based canopies are quite simple and effective algorithms for quantitative and qualitative evaluations of vegetation cover, vigor, and growth dynamics, among other applications These indices have been widely implemented within RS applications using different airborne and satellite platforms with recent advances using Unmanned Aerial Vehicles (UAV) Up to date, there is no unified mathematical expression that defines all VIs due to the complexity of different light spectra combinations, instrumentation, platforms, and resolutions used Therefore, customized algorithms have been developed and tested against a variety of applications according to specific mathematical expressions that combine visible light radiation, mainly green spectra region, from vegetation, and nonvisible spectra to obtain proxy quantifications of the vegetation surface In the real-world applications, optimization VIs are usually tailored to the specific application requirements coupled with appropriate validation tools and methodologies in the ground The present study introduces the spectral characteristics of vegetation and summarizes the development of VIs and the advantages and disadvantages from different indices developed This paper reviews more than 100 VIs, discussing their specific applicability and representativeness according to the vegetation of interest, environment, and implementation precision Predictably, research, and development of VIs, which are based on hyperspectral and UAV platforms, would have a wide applicability in different areas

1,190 citations