scispace - formally typeset
Search or ask a question
Author

Tim DeVries

Bio: Tim DeVries is an academic researcher from University of California, Santa Barbara. The author has contributed to research in topics: Ocean current & Biological pump. The author has an hindex of 22, co-authored 55 publications receiving 1912 citations. Previous affiliations of Tim DeVries include University of California, Irvine & University of California, Los Angeles.


Papers
More filters
Journal ArticleDOI
09 Feb 2017-Nature
TL;DR: This work uses a global inverse model to quantify the mean ocean circulation during the 1980s, 1990s and 2000s, and estimates the impact of decadal circulation changes on the oceanic CO2 sink using a carbon cycling model, and finds that during the 1990s an enhanced upper-ocean overturning circulation drove increased outgassing of natural CO2, thus weakening the globalCO2 sink.
Abstract: The ocean is the largest sink for anthropogenic carbon dioxide (CO2), having absorbed roughly 40 per cent of CO2 emissions since the beginning of the industrial era. Recent data show that oceanic CO2 uptake rates have been growing over the past decade, reversing a trend of stagnant or declining carbon uptake during the 1990s. Here we show that ocean circulation variability is the primary driver of these changes in oceanic CO2 uptake over the past several decades. We use a global inverse model to quantify the mean ocean circulation during the 1980s, 1990s and 2000s, and then estimate the impact of decadal circulation changes on the oceanic CO2 sink using a carbon cycling model. We find that during the 1990s an enhanced upper-ocean overturning circulation drove increased outgassing of natural CO2, thus weakening the global CO2 sink. This trend reversed during the 2000s as the overturning circulation weakened. Continued weakening of the upper-ocean overturning is likely to strengthen the CO2 sink in the near future by trapping natural CO2 in the deep ocean, but ultimately may limit oceanic uptake of anthropogenic CO2.

240 citations

Journal ArticleDOI
TL;DR: Using an inverse model combined with a global compilation of 228Ra observations, this article showed that SGD is the dominant pathway for dissolved terrestrial materials to the global ocean, and this necessitates revisions for the budgets of chemical elements including carbon.
Abstract: Along the continental margins, rivers and submarine groundwater supply nutrients, trace elements, and radionuclides to the coastal ocean, supporting coastal ecosystems and, increasingly, causing harmful algal blooms and eutrophication. While the global magnitude of gauged riverine water discharge is well known, the magnitude of submarine groundwater discharge (SGD) is poorly constrained. Using an inverse model combined with a global compilation of 228Ra observations, we show that the SGD integrated over the Atlantic and Indo-Pacific Oceans between 60°S and 70°N is (12 ± 3) × 1013 m3 yr−1, which is 3 to 4 times greater than the freshwater fluxes into the oceans by rivers. Unlike the rivers, where more than half of the total flux is discharged into the Atlantic, about 70% of SGD flows into the Indo-Pacific Oceans. We suggest that SGD is the dominant pathway for dissolved terrestrial materials to the global ocean, and this necessitates revisions for the budgets of chemical elements including carbon.

224 citations

Journal ArticleDOI
TL;DR: In this article, a new estimate of the oceanic anthropogenic CO2 (Cant) sink over the industrial era (1780 to present), from assimilation of potential temperature, salinity, radiocarbon, and CFC-11 observations in a global steady state ocean circulation inverse model (OCIM), is presented.
Abstract: This study presents a new estimate of the oceanic anthropogenic CO2(Cant) sink over the industrial era (1780 to present), from assimilation of potential temperature, salinity, radiocarbon, and CFC-11 observations in a global steady state ocean circulation inverse model (OCIM). This study differs from previous data-based estimates of the oceanic Cant sink in that dynamical constraints on ocean circulation are accounted for, and the ocean circulation is explicitly modeled, allowing the calculation of oceanic Cant storage, air-sea fluxes, and transports in a consistent manner. The resulting uncertainty of the OCIM-estimated Cant uptake, transport, and storage is significantly smaller than the comparable uncertainty from purely data-based or model-based estimates. The OCIM-estimated oceanic Cant storage is 160–166 PgC in 2012, and the oceanic Cant uptake rate averaged over the period 2000–2010 is 2.6 PgC yr−1 or about 30% of current anthropogenic CO2 emissions. This result implies a residual (primarily terrestrial) Cant sink of about 1.6 PgC yr−1 for the same period. The Southern Ocean is the primary conduit for Cant entering the ocean, taking up about 1.1 PgC yr−1 in 2012, which represents about 40% of the contemporary oceanic Cant uptake. It is suggested that the most significant source of remaining uncertainty in the oceanic Cant sink is due to potential variability in the ocean circulation over the industrial era.

197 citations

Journal ArticleDOI
TL;DR: In this article, a data-constrained ocean circulation model is used to characterize the distribution of water masses and their ages in the global ocean, which is constrained by the time-averaged temperature, salinity, and radiocarbon distributions in the ocean, as well as independent estimates of the mean sea surface height and sea surface heat.
Abstract: A data-constrained ocean circulation model is used to characterize the distribution of water masses and their ages in the global ocean. The model is constrained by the time-averaged temperature, salinity, and radiocarbon distributions in the ocean, as well as independent estimates of the mean sea surface height and sea surface heat and freshwater fluxes. The data-constrained model suggests that the interior ocean is ventilated primarily by water masses forming in the Southern Ocean. Southern Ocean waters, including those waters forming in the Antarctic and subantarctic regions, make up about 55% of the interior ocean volume and an even larger percentage of the deep-ocean volume. In the deep North Pacific, the ratio of Southern Ocean to North Atlantic waters is almost 3:1. Approximately 65% of interior ocean waters make first contact with the atmosphere in the Southern Ocean, further emphasizing the central role played by the Southern Ocean in the regulation of the earth’s climate. Results of the a...

173 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a new model of the biological pump that assimilates satellite and oceanographic tracer observations to constrain rates and patterns of organic matter production, export, and remineralization in the ocean.
Abstract: The ocean's biological pump transfers carbon from the surface euphotic zone into the deep ocean, reducing the atmospheric CO2 concentration. Despite its climatic importance, there are large uncertainties in basic metrics of the biological pump. Previous estimates of the strength of the biological pump, as measured by the amount of organic carbon exported from the euphotic zone, range from about 4 to 12 Pg C yr−1. The fate of exported carbon, in terms of how efficiently it is transferred into the deep ocean, is even more uncertain. Here we present a new model of the biological pump that assimilates satellite and oceanographic tracer observations to constrain rates and patterns of organic matter production, export, and remineralization in the ocean. The data-assimilated model predicts a global particulate organic carbon (POC) flux out of the euphotic zone of ∼9 Pg C yr−1. The particle export ratio (the ratio of POC export to net primary production) is highest at high latitudes and lowest at low latitudes, but low-latitude export is greater than predicted by previous models, in better agreement with observed patterns of long-term carbon export. Particle transfer efficiency (Teff) through the mesopelagic zone is controlled by temperature and oxygen, with highest Teff for high-latitude regions and oxygen minimum zones. In contrast, Teff in the deep ocean (below 1000 m) is controlled by particle sinking speed, with highest deep ocean Teff below the subtropical gyres. These results emphasize the utility of both remote sensing and oceanographic tracer observations for constraining the operation of the biological pump.

138 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the current state-of-the-art of CO2 capture, transport, utilisation and storage from a multi-scale perspective, moving from the global to molecular scales.
Abstract: Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets, delivering low carbon heat and power, decarbonising industry and, more recently, its ability to facilitate the net removal of CO2 from the atmosphere. However, despite this broad consensus and its technical maturity, CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus, in this paper we review the current state-of-the-art of CO2 capture, transport, utilisation and storage from a multi-scale perspective, moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 °C, we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS), and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS, we reflect on recent experience from the UK's CCS commercialisation programme and consider the commercial and political barriers to the large-scale deployment of CCS. In all areas, we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.

2,088 citations

Journal ArticleDOI
Pierre Friedlingstein1, Pierre Friedlingstein2, Michael O'Sullivan2, Matthew W. Jones3, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters4, Wouter Peters5, Julia Pongratz6, Julia Pongratz7, Stephen Sitch1, Corinne Le Quéré3, Josep G. Canadell8, Philippe Ciais9, Robert B. Jackson10, Simone R. Alin11, Luiz E. O. C. Aragão1, Luiz E. O. C. Aragão12, Almut Arneth, Vivek K. Arora, Nicholas R. Bates13, Nicholas R. Bates14, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp15, Selma Bultan7, Naveen Chandra16, Naveen Chandra17, Frédéric Chevallier9, Louise Chini18, Wiley Evans, Liesbeth Florentie4, Piers M. Forster19, Thomas Gasser20, Marion Gehlen9, Dennis Gilfillan, Thanos Gkritzalis21, Luke Gregor22, Nicolas Gruber22, Ian Harris23, Kerstin Hartung7, Kerstin Hartung24, Vanessa Haverd8, Richard A. Houghton25, Tatiana Ilyina6, Atul K. Jain26, Emilie Joetzjer27, Koji Kadono28, Etsushi Kato, Vassilis Kitidis29, Jan Ivar Korsbakken, Peter Landschützer6, Nathalie Lefèvre30, Andrew Lenton31, Sebastian Lienert32, Zhu Liu33, Danica Lombardozzi34, Gregg Marland35, Nicolas Metzl30, David R. Munro36, David R. Munro11, Julia E. M. S. Nabel6, S. Nakaoka17, Yosuke Niwa17, Kevin D. O'Brien11, Kevin D. O'Brien37, Tsuneo Ono, Paul I. Palmer, Denis Pierrot38, Benjamin Poulter, Laure Resplandy39, Eddy Robertson40, Christian Rödenbeck6, Jörg Schwinger, Roland Séférian27, Ingunn Skjelvan, Adam J. P. Smith3, Adrienne J. Sutton11, Toste Tanhua41, Pieter P. Tans11, Hanqin Tian42, Bronte Tilbrook43, Bronte Tilbrook31, Guido R. van der Werf44, N. Vuichard9, Anthony P. Walker45, Rik Wanninkhof38, Andrew J. Watson1, David R. Willis23, Andy Wiltshire40, Wenping Yuan46, Xu Yue47, Sönke Zaehle6 
University of Exeter1, École Normale Supérieure2, Norwich Research Park3, Wageningen University and Research Centre4, University of Groningen5, Max Planck Society6, Ludwig Maximilian University of Munich7, Commonwealth Scientific and Industrial Research Organisation8, Université Paris-Saclay9, Stanford University10, National Oceanic and Atmospheric Administration11, National Institute for Space Research12, Bermuda Institute of Ocean Sciences13, University of Southampton14, PSL Research University15, Japan Agency for Marine-Earth Science and Technology16, National Institute for Environmental Studies17, University of Maryland, College Park18, University of Leeds19, International Institute of Minnesota20, Flanders Marine Institute21, ETH Zurich22, University of East Anglia23, German Aerospace Center24, Woods Hole Research Center25, University of Illinois at Urbana–Champaign26, University of Toulouse27, Japan Meteorological Agency28, Plymouth Marine Laboratory29, University of Paris30, Hobart Corporation31, Oeschger Centre for Climate Change Research32, Tsinghua University33, National Center for Atmospheric Research34, Appalachian State University35, University of Colorado Boulder36, University of Washington37, Atlantic Oceanographic and Meteorological Laboratory38, Princeton University39, Met Office40, Leibniz Institute of Marine Sciences41, Auburn University42, University of Tasmania43, VU University Amsterdam44, Oak Ridge National Laboratory45, Sun Yat-sen University46, Nanjing University47
TL;DR: In this paper, the authors describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including emissions from land use and land-use change data and bookkeeping models.
Abstract: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ± 0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget imbalance BIM of −0.1 GtC yr−1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quere et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).

1,764 citations

Journal ArticleDOI
Corinne Le Quéré1, Robbie M. Andrew, Pierre Friedlingstein2, Stephen Sitch2, Judith Hauck3, Julia Pongratz4, Julia Pongratz5, Penelope A. Pickers1, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell6, Almut Arneth7, Vivek K. Arora, Leticia Barbero8, Leticia Barbero9, Ana Bastos4, Laurent Bopp10, Frédéric Chevallier11, Louise Chini12, Philippe Ciais11, Scott C. Doney13, Thanos Gkritzalis14, Daniel S. Goll11, Ian Harris1, Vanessa Haverd6, Forrest M. Hoffman15, Mario Hoppema3, Richard A. Houghton16, George C. Hurtt12, Tatiana Ilyina5, Atul K. Jain17, Truls Johannessen18, Chris D. Jones19, Etsushi Kato, Ralph F. Keeling20, Kees Klein Goldewijk21, Kees Klein Goldewijk22, Peter Landschützer5, Nathalie Lefèvre23, Sebastian Lienert24, Zhu Liu1, Zhu Liu25, Danica Lombardozzi26, Nicolas Metzl23, David R. Munro27, Julia E. M. S. Nabel5, Shin-Ichiro Nakaoka28, Craig Neill29, Craig Neill30, Are Olsen18, T. Ono, Prabir K. Patra31, Anna Peregon11, Wouter Peters32, Wouter Peters33, Philippe Peylin11, Benjamin Pfeil34, Benjamin Pfeil18, Denis Pierrot8, Denis Pierrot9, Benjamin Poulter35, Gregor Rehder36, Laure Resplandy37, Eddy Robertson19, Matthias Rocher11, Christian Rödenbeck5, Ute Schuster2, Jörg Schwinger34, Roland Séférian11, Ingunn Skjelvan34, Tobias Steinhoff38, Adrienne J. Sutton39, Pieter P. Tans39, Hanqin Tian40, Bronte Tilbrook30, Bronte Tilbrook29, Francesco N. Tubiello41, Ingrid T. van der Laan-Luijkx33, Guido R. van der Werf42, Nicolas Viovy11, Anthony P. Walker15, Andy Wiltshire19, Rebecca Wright1, Sönke Zaehle5, Bo Zheng11 
University of East Anglia1, University of Exeter2, Alfred Wegener Institute for Polar and Marine Research3, Ludwig Maximilian University of Munich4, Max Planck Society5, Commonwealth Scientific and Industrial Research Organisation6, Karlsruhe Institute of Technology7, Atlantic Oceanographic and Meteorological Laboratory8, Cooperative Institute for Marine and Atmospheric Studies9, École Normale Supérieure10, Centre national de la recherche scientifique11, University of Maryland, College Park12, University of Virginia13, Flanders Marine Institute14, Oak Ridge National Laboratory15, Woods Hole Research Center16, University of Illinois at Urbana–Champaign17, Geophysical Institute, University of Bergen18, Met Office19, University of California, San Diego20, Netherlands Environmental Assessment Agency21, Utrecht University22, University of Paris23, Oeschger Centre for Climate Change Research24, Tsinghua University25, National Center for Atmospheric Research26, Institute of Arctic and Alpine Research27, National Institute for Environmental Studies28, Hobart Corporation29, Cooperative Research Centre30, Japan Agency for Marine-Earth Science and Technology31, University of Groningen32, Wageningen University and Research Centre33, Bjerknes Centre for Climate Research34, Goddard Space Flight Center35, Leibniz Institute for Baltic Sea Research36, Princeton University37, Leibniz Institute of Marine Sciences38, National Oceanic and Atmospheric Administration39, Auburn University40, Food and Agriculture Organization41, VU University Amsterdam42
TL;DR: In this article, the authors describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including emissions from land use and land-use change data and bookkeeping models.
Abstract: . Accurate assessment of anthropogenic carbon dioxide ( CO2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions ( EFF ) are based on energy statistics and cement production data, while emissions from land use and land-use change ( ELUC ), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate ( GATM ) is computed from the annual changes in concentration. The ocean CO2 sink ( SOCEAN ) and terrestrial CO2 sink ( SLAND ) are estimated with global process models constrained by observations. The resulting carbon budget imbalance ( BIM ), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ . For the last decade available (2008–2017), EFF was 9.4±0.5 GtC yr −1 , ELUC 1.5±0.7 GtC yr −1 , GATM 4.7±0.02 GtC yr −1 , SOCEAN 2.4±0.5 GtC yr −1 , and SLAND 3.2±0.8 GtC yr −1 , with a budget imbalance BIM of 0.5 GtC yr −1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in EFF was about 1.6 % and emissions increased to 9.9±0.5 GtC yr −1 . Also for 2017, ELUC was 1.4±0.7 GtC yr −1 , GATM was 4.6±0.2 GtC yr −1 , SOCEAN was 2.5±0.5 GtC yr −1 , and SLAND was 3.8±0.8 GtC yr −1 , with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6–9 months indicate a renewed growth in EFF of + 2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017, but discrepancies of up to 1 GtC yr −1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quere et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2018 .

1,458 citations

Journal ArticleDOI
Pierre Friedlingstein1, Pierre Friedlingstein2, Matthew W. Jones3, Michael O'Sullivan2, Robbie M. Andrew, Judith Hauck4, Glen P. Peters, Wouter Peters5, Wouter Peters6, Julia Pongratz7, Julia Pongratz8, Stephen Sitch2, Corinne Le Quéré3, Dorothee C. E. Bakker3, Josep G. Canadell9, Philippe Ciais10, Robert B. Jackson11, Peter Anthoni12, Leticia Barbero13, Leticia Barbero14, Ana Bastos8, Vladislav Bastrikov10, Meike Becker15, Meike Becker16, Laurent Bopp1, Erik T. Buitenhuis3, Naveen Chandra17, Frédéric Chevallier10, Louise Chini18, Kim I. Currie19, Richard A. Feely20, Marion Gehlen10, Dennis Gilfillan21, Thanos Gkritzalis22, Daniel S. Goll23, Nicolas Gruber24, Sören B. Gutekunst25, Ian Harris26, Vanessa Haverd9, Richard A. Houghton27, George C. Hurtt18, Tatiana Ilyina7, Atul K. Jain28, Emilie Joetzjer10, Jed O. Kaplan29, Etsushi Kato, Kees Klein Goldewijk30, Kees Klein Goldewijk31, Jan Ivar Korsbakken, Peter Landschützer7, Siv K. Lauvset15, Nathalie Lefèvre32, Andrew Lenton33, Andrew Lenton34, Sebastian Lienert35, Danica Lombardozzi36, Gregg Marland21, Patrick C. McGuire37, Joe R. Melton, Nicolas Metzl32, David R. Munro38, Julia E. M. S. Nabel7, Shin-Ichiro Nakaoka39, Craig Neill33, Abdirahman M Omar15, Abdirahman M Omar33, Tsuneo Ono, Anna Peregon40, Anna Peregon10, Denis Pierrot14, Denis Pierrot13, Benjamin Poulter41, Gregor Rehder42, Laure Resplandy43, Eddy Robertson44, Christian Rödenbeck7, Roland Séférian10, Jörg Schwinger15, Jörg Schwinger30, Naomi E. Smith45, Naomi E. Smith6, Pieter P. Tans20, Hanqin Tian46, Bronte Tilbrook33, Bronte Tilbrook34, Francesco N. Tubiello47, Guido R. van der Werf48, Andy Wiltshire44, Sönke Zaehle7 
École Normale Supérieure1, University of Exeter2, Norwich Research Park3, Alfred Wegener Institute for Polar and Marine Research4, University of Groningen5, Wageningen University and Research Centre6, Max Planck Society7, Ludwig Maximilian University of Munich8, Commonwealth Scientific and Industrial Research Organisation9, Centre national de la recherche scientifique10, Stanford University11, Karlsruhe Institute of Technology12, Atlantic Oceanographic and Meteorological Laboratory13, Cooperative Institute for Marine and Atmospheric Studies14, Bjerknes Centre for Climate Research15, Geophysical Institute, University of Bergen16, Japan Agency for Marine-Earth Science and Technology17, University of Maryland, College Park18, National Institute of Water and Atmospheric Research19, National Oceanic and Atmospheric Administration20, Appalachian State University21, Flanders Marine Institute22, Augsburg College23, ETH Zurich24, Leibniz Institute of Marine Sciences25, University of East Anglia26, Woods Hole Research Center27, University of Illinois at Urbana–Champaign28, University of Hong Kong29, Netherlands Environmental Assessment Agency30, Utrecht University31, University of Paris32, Hobart Corporation33, University of Tasmania34, University of Bern35, National Center for Atmospheric Research36, University of Reading37, Cooperative Institute for Research in Environmental Sciences38, National Institute for Environmental Studies39, Russian Academy of Sciences40, Goddard Space Flight Center41, Leibniz Institute for Baltic Sea Research42, Princeton University43, Met Office44, Lund University45, Auburn University46, Food and Agriculture Organization47, VU University Amsterdam48
TL;DR: In this article, the authors describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including emissions from land use and land use change, and show that the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere is a measure of imperfect data and understanding of the contemporary carbon cycle.
Abstract: . Accurate assessment of anthropogenic carbon dioxide ( CO2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions ( EFF ) are based on energy statistics and cement production data, while emissions from land use change ( ELUC ), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate ( GATM ) is computed from the annual changes in concentration. The ocean CO2 sink ( SOCEAN ) and terrestrial CO2 sink ( SLAND ) are estimated with global process models constrained by observations. The resulting carbon budget imbalance ( BIM ), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ . For the last decade available (2009–2018), EFF was 9.5±0.5 GtC yr −1 , ELUC 1.5±0.7 GtC yr −1 , GATM 4.9±0.02 GtC yr −1 ( 2.3±0.01 ppm yr −1 ), SOCEAN 2.5±0.6 GtC yr −1 , and SLAND 3.2±0.6 GtC yr −1 , with a budget imbalance BIM of 0.4 GtC yr −1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr −1 , reaching 10 GtC yr −1 for the first time in history, ELUC was 1.5±0.7 GtC yr −1 , for total anthropogenic CO2 emissions of 11.5±0.9 GtC yr −1 ( 42.5±3.3 GtCO2 ). Also for 2018, GATM was 5.1±0.2 GtC yr −1 ( 2.4±0.1 ppm yr −1 ), SOCEAN was 2.6±0.6 GtC yr −1 , and SLAND was 3.5±0.7 GtC yr −1 , with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of −0.2 % to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959–2018, but discrepancies of up to 1 GtC yr −1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le Quere et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019).

981 citations

Journal ArticleDOI
Corinne Le Quéré1, Robbie M. Andrew, Pierre Friedlingstein2, Stephen Sitch2, Julia Pongratz3, Andrew C. Manning1, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell4, Robert B. Jackson5, Thomas A. Boden6, Pieter P. Tans7, Oliver Andrews1, Vivek K. Arora, Dorothee C. E. Bakker1, Leticia Barbero8, Leticia Barbero9, Meike Becker10, Meike Becker11, Richard Betts12, Richard Betts2, Laurent Bopp13, Frédéric Chevallier14, Louise Chini15, Philippe Ciais14, Catherine E Cosca7, Jessica N. Cross7, Kim I. Currie16, Thomas Gasser17, Ian Harris1, Judith Hauck18, Vanessa Haverd4, Richard A. Houghton19, Christopher W. Hunt20, George C. Hurtt15, Tatiana Ilyina3, Atul K. Jain21, Etsushi Kato, Markus Kautz22, Ralph F. Keeling23, Kees Klein Goldewijk24, Kees Klein Goldewijk25, Arne Körtzinger26, Peter Landschützer3, Nathalie Lefèvre27, Andrew Lenton28, Andrew Lenton29, Sebastian Lienert30, Sebastian Lienert31, Ivan D. Lima19, Danica Lombardozzi32, Nicolas Metzl27, Frank J. Millero33, Pedro M. S. Monteiro34, David R. Munro35, Julia E. M. S. Nabel3, Shin-Ichiro Nakaoka36, Yukihiro Nojiri36, X. Antonio Padin37, Anna Peregon14, Benjamin Pfeil11, Benjamin Pfeil10, Denis Pierrot8, Denis Pierrot9, Benjamin Poulter38, Benjamin Poulter39, Gregor Rehder40, Janet J. Reimer41, Christian Rödenbeck3, Jörg Schwinger10, Roland Séférian14, Ingunn Skjelvan10, Benjamin D. Stocker, Hanqin Tian42, Bronte Tilbrook29, Bronte Tilbrook28, Francesco N. Tubiello43, Ingrid T. van der Laan-Luijkx44, Guido R. van der Werf45, Steven van Heuven46, Nicolas Viovy14, Nicolas Vuichard14, Anthony P. Walker6, Andrew J. Watson2, Andy Wiltshire12, Sönke Zaehle3, Dan Zhu14 
University of East Anglia1, University of Exeter2, Max Planck Society3, Commonwealth Scientific and Industrial Research Organisation4, Stanford University5, Oak Ridge National Laboratory6, National Oceanic and Atmospheric Administration7, Cooperative Institute for Marine and Atmospheric Studies8, Atlantic Oceanographic and Meteorological Laboratory9, Bjerknes Centre for Climate Research10, Geophysical Institute, University of Bergen11, Met Office12, École Normale Supérieure13, Centre national de la recherche scientifique14, University of Maryland, College Park15, National Institute of Water and Atmospheric Research16, International Institute for Applied Systems Analysis17, Alfred Wegener Institute for Polar and Marine Research18, Woods Hole Oceanographic Institution19, University of New Hampshire20, University of Illinois at Urbana–Champaign21, Karlsruhe Institute of Technology22, University of California, San Diego23, Utrecht University24, Netherlands Environmental Assessment Agency25, Leibniz Institute of Marine Sciences26, University of Paris27, Cooperative Research Centre28, Hobart Corporation29, University of Bern30, Oeschger Centre for Climate Change Research31, National Center for Atmospheric Research32, University of Miami33, Council of Scientific and Industrial Research34, Institute of Arctic and Alpine Research35, National Institute for Environmental Studies36, Spanish National Research Council37, Goddard Space Flight Center38, Montana State University39, Leibniz Institute for Baltic Sea Research40, University of Delaware41, Auburn University42, Food and Agriculture Organization43, Wageningen University and Research Centre44, VU University Amsterdam45, University of Groningen46
TL;DR: In this paper, the authors quantify the five major components of the global carbon budget and their uncertainties, and the resulting carbon budget imbalance (BIM) is a measure of imperfect data and understanding of the contemporary carbon cycle.
Abstract: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the high fossil emissions and the small SLAND consistent with El Nino conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.0 % (range of 0.8 to 3.0 %) based on national emissions projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent changes in the carbon intensity of the economy for the rest of the world. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quere et al., 2016, 2015b, a, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017 (GCP, 2017).

884 citations