scispace - formally typeset
Search or ask a question
Author

Tim Fuller-Rowell

Bio: Tim Fuller-Rowell is an academic researcher from National Oceanic and Atmospheric Administration. The author has contributed to research in topics: Thermosphere & Ionosphere. The author has an hindex of 58, co-authored 219 publications receiving 11486 citations. Previous affiliations of Tim Fuller-Rowell include Cooperative Institute for Research in Environmental Sciences & University of Colorado Boulder.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, four numerical simulations have been performed, at equinox, using a coupled thermosphere-ionosphere model, to illustrate the response of the upper atmosphere to geomagnetic storms.
Abstract: Four numerical simulations have been performed, at equinox, using a coupled thermosphere-ionosphere model, to illustrate the response of the upper atmosphere to geomagnetic storms. The storms are characterized by an increase in magnetospheric energy input at high latitude for a 12-hour period; each storm commences at a different universal time (UT). The initial response at high latitude is that Joule heating raises the temperature of the upper thermosphere and ion drag drives high-velocity neutral winds. The heat source drives a global wind surge, from both polar regions, which propagates to low latitudes and into the opposite hemisphere. The surge has the character of a large-scale gravity wave with a phase speed of about 600 m/s. Behind the surge a global circulation of magnitude 100 m/s is established at middle latitudes, indicating that the wave and the onset of global circulation are manifestations of the same phenomena. A dominant feature of the response is the penetration of the surge into the opposite hemisphere where it drives poleward winds for a few hours. The global wind surge has a preference for the night sector and for the longitude of the magnetic pole and therefore depends on the UT start time of the storm. A second phase of the meridional circulation develops after the wave interaction but is also restricted, in this case by the buildup of zonal winds via the Coriolis interaction. Conservation of angular momentum may limit the buildup of zonal wind in extreme cases. The divergent wind field drives upwelling and composition change on both height and pressure surfaces. The composition bulge responds to both the background and the storm-induced horizontal winds; it does not simply rotate with Earth. During the storm the disturbance wind modulates the location of the bulge; during the recovery the background winds induce a diurnal variation in its position. Equatorward winds in sunlight produce positive ionospheric changes during the main driving phase of the storm. Negative ionospheric phases are caused by increases of molecular nitrogen in regions of sunlight, the strength of which depends on longitude and the local time of the sector during the storm input. Regions of positive phase in the ionosphere persist in the recovery period due to decreases in mean molecular mass in regions of previous downwelling. Ion density changes, expressed as a ratio of disturbed to quiet values, exhibit a diurnal variation that is driven by the location of the composition bulge; this variation explains the ac component of the local time variation of the observed negative storm phase.

777 citations

Journal ArticleDOI
TL;DR: In this article, a series of polar-orbiting National Oceanic and Atmospheric Administration spacecraft TIROS, NOAA 6, and NOAA 7 have been monitoring the particle influx into the atmosphere since late 1978.
Abstract: The series of polar-orbiting National Oceanic and Atmospheric Administration spacecraft TIROS, NOAA 6, and NOAA 7 have been monitoring the particle influx into the atmosphere since late 1978. This data base has been used to construct statistical global patterns of height-integrated Pedersen and Hall conductivities for a discrete set of auroral activity ranges. The observations of energy influx and “characteristic electron energy” have been binned in a 1° latitude and 2° magnetic local time grid and ordered by an auroral activity index. This index is an estimate of the energy deposited into a single hemisphere by incident particles, a parameter generated directly from the particle observations and, therefore, internally consistent with the statistical patterns that are constructed. An average electron spectrum is associated with each characteristic energy, which enables a height profile of ionization rate in the upper atmosphere to be determined. The use of a pressure coordinate system insures that the normalized ionization rate profiles are independent of atmospheric model parameters. To create the statistical pattern of height-integrated conductivities, however, vertical profiles of atmospheric temperature and composition are assumed, and the ion density enhancements are evaluated from a chemical balance between ion production and recombination based on an “effective” recombination coefficient. The data base can also provide the statistical pattern of particle heating rates and ionization rates over a three-dimensional grid suitable as input to more sophisticated ionospheric and neutral thermospheric codes.

472 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the interplanetary shock/electric field event of 5-6 November 2001 using GPS receiver data from CHAMP and SAC-C satellites and altimeter data from the TOPEX/ Poseidon satellite.
Abstract: The interplanetary shock/electric field event of 5-6 November 2001 is analyzed using ACE interplanetary data. The consequential ionospheric effects are studied using GPS receiver data from the CHAMP and SAC-C satellites and altimeter data from the TOPEX/ Poseidon satellite. Data from ~100 ground-based GPS receivers as well as Brazilian Digisonde and Pacific sector magnetometer data are also used. The dawn-to-dusk interplanetary electric field was initially ~33 mV/m just after the forward shock (IMF BZ = -48 nT) and later reached a peak value of ~54 mV/m 1 hour and 40 min later (BZ = -78 nT). The electric field was ~45 mV/m (BZ = -65 nT) 2 hours after the shock. This electric field generated a magnetic storm of intensity DST = -275 nT. The dayside satellite GPS receiver data plus ground-based GPS data indicate that the entire equatorial and midlatitude (up to +/-50(deg) magnetic latitude (MLAT)) dayside ionosphere was uplifted, significantly increasing the electron content (and densities) at altitudes greater than 430 km (CHAMP orbital altitude). This uplift peaked ~2 1/2 hours after the shock passage. The effect of the uplift on the ionospheric total electron content (TEC) lasted for 4 to 5 hours. Our hypothesis is that the interplanetary electric field ''promptly penetrated'' to the ionosphere, and the dayside plasma was convected (by E x B) to higher altitudes. Plasma upward transport/convergence led to a ~55-60% increase in equatorial ionospheric TEC to values above ~430 km (at 1930 LT). This transport/convergence plus photoionization of atmospheric neutrals at lower altitudes caused a 21% TEC increase in equatorial ionospheric TEC at ~1400 LT (from ground-based measurements). During the intense electric field interval, there was a sharp plasma ''shoulder'' detected at midlatitudes by the GPS receiver and altimeter satellites. This shoulder moves equatorward from -54(deg) to -37(deg) MLAT during the development of the main phase of the magnetic storm. We presume this to be an ionospheric signature of the plasmapause and its motion. The total TEC increase of this shoulder is ~80%. Part of this increase may be due to a "superfountain effect." The dayside ionospheric TEC above ~430 km decreased to values ~45% lower than quiet day values 7 to 9 hours after the beginning of the electric field event. The total equatorial ionospheric TEC decrease was ~16%. This decrease occurred both at midlatitudes and at the equator. We presume that thermospheric winds and neutral composition changes produced by the storm-time Joule heating, disturbance dynamo electric fields, and electric fields at auroral and subauroral latitudes are responsible for these decreases.

433 citations

Journal ArticleDOI
TL;DR: In this article, a global, three-dimensional, time-dependent numerical model of the thermosphere has been created to simulate the dynamical behavior of the earth's thermospheres under a wide variety of geophysical conditions.
Abstract: A global, three-dimensional, time-dependent numerical model of the thermosphere has been created to simulate the dynamical behavior of the earth's thermosphere under a wide variety of geophysical conditions. Comparison of the model's predictions with the available data from ground-based, rocket and satellite techniques has shown that thermospheric dynamics can be realistically simulated by considering only three processes which deposit energy, or energy and momentum, in the thermosphere. Comparisons between the simulations and available data allow assessment of the magnitudes of the various processes as functions, particularly, of solar and geomagnetic activity. The model is fully self-consistent in solving the neutral gas equations of momentum, energy and continuity, including all the Coriolis, inertial, viscosity and nonlinear terms, but assumes that the thermosphere contains a single species whose mean molecular weight varies only with the pressure. At times when the mean meridional wind is la...

430 citations

Journal ArticleDOI
TL;DR: In this paper, a three-dimensional model of the coupled thermosphere and ionosphere is used to explain the dependence of the midlatitude ionosphere response to geomagnetic storms.
Abstract: Ionosonde observations have provided the data to build a picture of the response of the midlatitude ionosphere to a geomagnetic storm. The particular characteristic of interest is the preference for “negative storms” (decrease in the peak electron density, NmF2) in summer and “positive storms” (increase in NmF2) in winter. A three-dimensional, time-dependent model of the coupled thermosphere and ionosphere is used to explain this dependence. During the driven phase of a geomagnetic storm the two main magnetospheric energy sources to the upper atmosphere (auroral precipitation and convective electric field) increase dramatically. Auroral precipitation increases the ion density and conductivity of the upper atmosphere; the electric field drives the ionosphere and, through collisions, forces the thermosphere into motion and then deposits heat via Joule dissipation. The global wind response is divergent at high latitudes in both hemispheres. Vertical winds are driven by the divergent wind field and carry molecule-rich air to higher levels. Once created, the “composition bulge” of increased mean molecular mass is transported by both the storm-induced and background wind fields. The storm winds imposed on the background circulation do not have a strong seasonal dependence, and this is not necessary to explain the observations. Numerical computations suggest that the prevailing summer-to-winter circulation at solstice transports the molecule-rich gas to mid and low latitudes in the summer hemisphere over the day or two following the storm. In the winter hemisphere, poleward winds restrict the equatorward movement of composition. The altered neutral-chemical environment in summer subsequently depletes the F region midlatitude ionosphere to produce a “negative storm”. In winter midlatitudes a decrease in molecular species, associated with downwelling, persists and produces the characteristic “positive storm”.

414 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Atmospheric Imaging Assembly (AIA) as discussed by the authors provides multiple simultaneous high-resolution full-disk images of the corona and transition region up to 0.5 R ⊙ above the solar limb with 1.5-arcsec spatial resolution and 12-second temporal resolution.
Abstract: The Atmospheric Imaging Assembly (AIA) provides multiple simultaneous high-resolution full-disk images of the corona and transition region up to 0.5 R ⊙ above the solar limb with 1.5-arcsec spatial resolution and 12-second temporal resolution. The AIA consists of four telescopes that employ normal-incidence, multilayer-coated optics to provide narrow-band imaging of seven extreme ultraviolet (EUV) band passes centered on specific lines: Fe xviii (94 A), Fe viii, xxi (131 A), Fe ix (171 A), Fe xii, xxiv (193 A), Fe xiv (211 A), He ii (304 A), and Fe xvi (335 A). One telescope observes C iv (near 1600 A) and the nearby continuum (1700 A) and has a filter that observes in the visible to enable coalignment with images from other telescopes. The temperature diagnostics of the EUV emissions cover the range from 6×104 K to 2×107 K. The AIA was launched as a part of NASA’s Solar Dynamics Observatory (SDO) mission on 11 February 2010. AIA will advance our understanding of the mechanisms of solar variability and of how the Sun’s energy is stored and released into the heliosphere and geospace.

4,321 citations

Journal ArticleDOI
TL;DR: The Solar Dynamics Observatory (SDO) was launched on 11 February 2010 at 15:23 UT from Kennedy Space Center aboard an Atlas V 401 (AV-021) launch vehicle as mentioned in this paper.
Abstract: The Solar Dynamics Observatory (SDO) was launched on 11 February 2010 at 15:23 UT from Kennedy Space Center aboard an Atlas V 401 (AV-021) launch vehicle. A series of apogee-motor firings lifted SDO from an initial geosynchronous transfer orbit into a circular geosynchronous orbit inclined by 28° about the longitude of the SDO-dedicated ground station in New Mexico. SDO began returning science data on 1 May 2010. SDO is the first space-weather mission in NASA’s Living With a Star (LWS) Program. SDO’s main goal is to understand, driving toward a predictive capability, those solar variations that influence life on Earth and humanity’s technological systems. The SDO science investigations will determine how the Sun’s magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. Insights gained from SDO investigations will also lead to an increased understanding of the role that solar variability plays in changes in Earth’s atmospheric chemistry and climate. The SDO mission includes three scientific investigations (the Atmospheric Imaging Assembly (AIA), Extreme Ultraviolet Variability Experiment (EVE), and Helioseismic and Magnetic Imager (HMI)), a spacecraft bus, and a dedicated ground station to handle the telemetry. The Goddard Space Flight Center built and will operate the spacecraft during its planned five-year mission life; this includes: commanding the spacecraft, receiving the science data, and forwarding that data to the science teams. The science investigations teams at Stanford University, Lockheed Martin Solar Astrophysics Laboratory (LMSAL), and University of Colorado Laboratory for Atmospheric and Space Physics (LASP) will process, analyze, distribute, and archive the science data. We will describe the building of SDO and the science that it will provide to NASA.

3,043 citations

01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

2,975 citations

Journal ArticleDOI
TL;DR: The Helioseismic and Magnetic Imager (HMI) instrument and investigation as a part of the NASA Solar Dynamics Observatory (SDO) is designed to study convection-zone dynamics and the solar dynamo, the origin and evolution of sunspots, active regions, and complexes of activity, the sources and drivers of solar magnetic activity and disturbances as mentioned in this paper.
Abstract: The Helioseismic and Magnetic Imager (HMI) instrument and investigation as a part of the NASA Solar Dynamics Observatory (SDO) is designed to study convection-zone dynamics and the solar dynamo, the origin and evolution of sunspots, active regions, and complexes of activity, the sources and drivers of solar magnetic activity and disturbances, links between the internal processes and dynamics of the corona and heliosphere, and precursors of solar disturbances for space-weather forecasts. A brief overview of the instrument, investigation objectives, and standard data products is presented.

2,242 citations

Journal ArticleDOI
TL;DR: In this article, a review of gravity wave sources and characteristics, the evolution of the gravity wave spectrum with altitude and with variations of wind and stability, the character and implications of observed climatologies, and the wave interaction and instability processes that constrain wave amplitudes and spectral shape are discussed.
Abstract: [1] Atmospheric gravity waves have been a subject of intense research activity in recent years because of their myriad effects and their major contributions to atmospheric circulation, structure, and variability. Apart from occasionally strong lower-atmospheric effects, the major wave influences occur in the middle atmosphere, between ∼ 10 and 110 km altitudes because of decreasing density and increasing wave amplitudes with altitude. Theoretical, numerical, and observational studies have advanced our understanding of gravity waves on many fronts since the review by Fritts [1984a]; the present review will focus on these more recent contributions. Progress includes a better appreciation of gravity wave sources and characteristics, the evolution of the gravity wave spectrum with altitude and with variations of wind and stability, the character and implications of observed climatologies, and the wave interaction and instability processes that constrain wave amplitudes and spectral shape. Recent studies have also expanded dramatically our understanding of gravity wave influences on the large-scale circulation and the thermal and constituent structures of the middle atmosphere. These advances have led to a number of parameterizations of gravity wave effects which are enabling ever more realistic descriptions of gravity wave forcing in large-scale models. There remain, nevertheless, a number of areas in which further progress is needed in refining our understanding of and our ability to describe and predict gravity wave influences in the middle atmosphere. Our view of these unknowns and needs is also offered.

2,206 citations