scispace - formally typeset
Search or ask a question
Author

Tim Rault

Bio: Tim Rault is an academic researcher. The author has contributed to research in topics: Language model & Transformer (machine learning model). The author has an hindex of 2, co-authored 3 publications receiving 2315 citations.

Papers
More filters
Posted Content
TL;DR: The \textit{Transformers} library is an open-source library that consists of carefully engineered state-of-the art Transformer architectures under a unified API and a curated collection of pretrained models made by and available for the community.
Abstract: Recent progress in natural language processing has been driven by advances in both model architecture and model pretraining. Transformer architectures have facilitated building higher-capacity models and pretraining has made it possible to effectively utilize this capacity for a wide variety of tasks. \textit{Transformers} is an open-source library with the goal of opening up these advances to the wider machine learning community. The library consists of carefully engineered state-of-the art Transformer architectures under a unified API. Backing this library is a curated collection of pretrained models made by and available for the community. \textit{Transformers} is designed to be extensible by researchers, simple for practitioners, and fast and robust in industrial deployments. The library is available at \url{this https URL}.

3,463 citations

Posted Content
09 Oct 2019
TL;DR: Transformers is an open-source library that consists of carefully engineered state-of-the art Transformer architectures under a unified API and a curated collection of pretrained models made by and available for the community.
Abstract: Recent advances in modern Natural Language Processing (NLP) research have been dominated by the combination of Transfer Learning methods with large-scale Transformer language models. With them came a paradigm shift in NLP with the starting point for training a model on a downstream task moving from a blank specific model to a general-purpose pretrained architecture. Still, creating these general-purpose models remains an expensive and time-consuming process restricting the use of these methods to a small sub-set of the wider NLP community. In this paper, we present Transformers, a library for state-of-the-art NLP, making these developments available to the community by gathering state-of-the-art general-purpose pretrained models under a unified API together with an ecosystem of libraries, examples, tutorials and scripts targeting many downstream NLP tasks. Transformers features carefully crafted model implementations and high-performance pretrained weights for two main deep learning frameworks, PyTorch and TensorFlow, while supporting all the necessary tools to analyze, evaluate and use these models in downstream tasks such as text/token classification, questions answering and language generation among others. Transformers has gained significant organic traction and adoption among both the researcher and practitioner communities. We are committed at Hugging Face to pursue the efforts to develop Transformers with the ambition of creating the standard library for building NLP systems.

1,261 citations


Cited by
More filters
Posted Content
TL;DR: This work proposes a method to pre-train a smaller general-purpose language representation model, called DistilBERT, which can be fine-tuned with good performances on a wide range of tasks like its larger counterparts, and introduces a triple loss combining language modeling, distillation and cosine-distance losses.
Abstract: As Transfer Learning from large-scale pre-trained models becomes more prevalent in Natural Language Processing (NLP), operating these large models in on-the-edge and/or under constrained computational training or inference budgets remains challenging. In this work, we propose a method to pre-train a smaller general-purpose language representation model, called DistilBERT, which can then be fine-tuned with good performances on a wide range of tasks like its larger counterparts. While most prior work investigated the use of distillation for building task-specific models, we leverage knowledge distillation during the pre-training phase and show that it is possible to reduce the size of a BERT model by 40%, while retaining 97% of its language understanding capabilities and being 60% faster. To leverage the inductive biases learned by larger models during pre-training, we introduce a triple loss combining language modeling, distillation and cosine-distance losses. Our smaller, faster and lighter model is cheaper to pre-train and we demonstrate its capabilities for on-device computations in a proof-of-concept experiment and a comparative on-device study.

3,877 citations

Journal ArticleDOI
TL;DR: The approach extends BERT by masking contiguous random spans, rather than random tokens, and training the span boundary representations to predict the entire content of the masked span, without relying on the individual token representations within it.
Abstract: We present SpanBERT, a pre-training method that is designed to better represent and predict spans of text. Our approach extends BERT by (1) masking contiguous random spans, rather than random token...

1,018 citations

Posted Content
TL;DR: SpanBERT as discussed by the authors extends BERT by masking contiguous random spans, rather than random tokens, and training the span boundary representations to predict the entire content of the masked span, without relying on the individual token representations within it.
Abstract: We present SpanBERT, a pre-training method that is designed to better represent and predict spans of text. Our approach extends BERT by (1) masking contiguous random spans, rather than random tokens, and (2) training the span boundary representations to predict the entire content of the masked span, without relying on the individual token representations within it. SpanBERT consistently outperforms BERT and our better-tuned baselines, with substantial gains on span selection tasks such as question answering and coreference resolution. In particular, with the same training data and model size as BERT-large, our single model obtains 94.6% and 88.7% F1 on SQuAD 1.1 and 2.0, respectively. We also achieve a new state of the art on the OntoNotes coreference resolution task (79.6\% F1), strong performance on the TACRED relation extraction benchmark, and even show gains on GLUE.

722 citations

Posted Content
TL;DR: This work introduces Pattern-Exploiting Training (PET), a semi-supervised training procedure that reformulates input examples as cloze-style phrases to help language models understand a given task.
Abstract: Some NLP tasks can be solved in a fully unsupervised fashion by providing a pretrained language model with "task descriptions" in natural language (e.g., Radford et al., 2019). While this approach underperforms its supervised counterpart, we show in this work that the two ideas can be combined: We introduce Pattern-Exploiting Training (PET), a semi-supervised training procedure that reformulates input examples as cloze-style phrases to help language models understand a given task. These phrases are then used to assign soft labels to a large set of unlabeled examples. Finally, standard supervised training is performed on the resulting training set. For several tasks and languages, PET outperforms supervised training and strong semi-supervised approaches in low-resource settings by a large margin.

675 citations

Posted Content
TL;DR: A general-purpose fine-tuning recipe for retrieval-augmented generation (RAG) -- models which combine pre-trained parametric and non-parametric memory for language generation, and finds that RAG models generate more specific, diverse and factual language than a state-of-the-art parametric-only seq2seq baseline.
Abstract: Large pre-trained language models have been shown to store factual knowledge in their parameters, and achieve state-of-the-art results when fine-tuned on downstream NLP tasks. However, their ability to access and precisely manipulate knowledge is still limited, and hence on knowledge-intensive tasks, their performance lags behind task-specific architectures. Additionally, providing provenance for their decisions and updating their world knowledge remain open research problems. Pre-trained models with a differentiable access mechanism to explicit non-parametric memory can overcome this issue, but have so far been only investigated for extractive downstream tasks. We explore a general-purpose fine-tuning recipe for retrieval-augmented generation (RAG) -- models which combine pre-trained parametric and non-parametric memory for language generation. We introduce RAG models where the parametric memory is a pre-trained seq2seq model and the non-parametric memory is a dense vector index of Wikipedia, accessed with a pre-trained neural retriever. We compare two RAG formulations, one which conditions on the same retrieved passages across the whole generated sequence, the other can use different passages per token. We fine-tune and evaluate our models on a wide range of knowledge-intensive NLP tasks and set the state-of-the-art on three open domain QA tasks, outperforming parametric seq2seq models and task-specific retrieve-and-extract architectures. For language generation tasks, we find that RAG models generate more specific, diverse and factual language than a state-of-the-art parametric-only seq2seq baseline.

632 citations