scispace - formally typeset
Search or ask a question
Author

Timo Vihma

Bio: Timo Vihma is an academic researcher from Finnish Meteorological Institute. The author has contributed to research in topics: Sea ice & Arctic. The author has an hindex of 39, co-authored 180 publications receiving 5820 citations. Previous affiliations of Timo Vihma include University Centre in Svalbard & University of Helsinki.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of the local and remote effects of the sea ice decline on weather and climate is presented in this paper, where it is evident that the reduction in sea ice cover has increased the heat flux from the ocean to atmosphere in autumn and early winter.
Abstract: The areal extent, concentration and thickness of sea ice in the Arctic Ocean and adjacent seas have strongly decreased during the recent decades, but cold, snow-rich winters have been common over mid-latitude land areas since 2005. A review is presented on studies addressing the local and remote effects of the sea ice decline on weather and climate. It is evident that the reduction in sea ice cover has increased the heat flux from the ocean to atmosphere in autumn and early winter. This has locally increased air tempera- ture, moisture, and cloud cover and reduced the static stability in the lower troposphere. Several studies based on observations, atmospheric reanalyses, and model experiments suggest that the sea ice decline, together with increased snow cover in Eurasia, favours circulation patterns resembling the negative phase of the North Atlantic Oscillation and Arctic Oscillation. The suggested large-scale pressure patterns include a high over Eurasia, which favours cold winters in Europe and northeastern Eurasia. A high over the western and a low over the eastern North America have also been suggested, favouring advection of Arctic air masses to North America. Mid-latitude winter weather is, however, affected by several other factors, which generate a large inter-annual variability and often mask the effects of sea ice decline. In addition, the small sample of years with a large sea ice loss makes it difficult to distinguish the effects directly attributable to sea ice conditions. Several studies suggest that, with advancing global warming, cold winters in mid-latitude continents will no longer be common during the second half of the twenty-first century. Recent studies have also suggested causal links between the sea ice decline and summer precipitation in Europe, the Mediterranean, and East Asia.

645 citations

Journal ArticleDOI
TL;DR: The Arctic has warmed more than twice as fast as the global average since the late twentieth century, a phenomenon known as Arctic amplification (AA), and progress has been made in understanding the mechanisms that link it to midlatitude weather variability as discussed by the authors.
Abstract: The Arctic has warmed more than twice as fast as the global average since the late twentieth century, a phenomenon known as Arctic amplification (AA). Recently, there have been considerable advances in understanding the physical contributions to AA, and progress has been made in understanding the mechanisms that link it to midlatitude weather variability. Observational studies overwhelmingly support that AA is contributing to winter continental cooling. Although some model experiments support the observational evidence, most modelling results show little connection between AA and severe midlatitude weather or suggest the export of excess heating from the Arctic to lower latitudes. Divergent conclusions between model and observational studies, and even intramodel studies, continue to obfuscate a clear understanding of how AA is influencing midlatitude weather.

423 citations

Journal ArticleDOI
TL;DR: The potential of recent Arctic changes to influence hemispheric weather is a complex and controversial topic with considerable uncertainty, as time series of potential linkages are short (<10 yr) and understanding involves the relative contribution of direct forcing by Arctic changes on a chaotic climatic system as discussed by the authors.
Abstract: The potential of recent Arctic changes to influence hemispheric weather is a complex and controversial topic with considerable uncertainty, as time series of potential linkages are short (<10 yr) and understanding involves the relative contribution of direct forcing by Arctic changes on a chaotic climatic system. A way forward is through further investigation of atmospheric dynamic mechanisms. During several exceptionally warm Arctic winters since 2007, sea ice loss in the Barents and Kara Seas initiated eastward-propagating wave trains of high and low pressure. Anomalous high pressure east of the Ural Mountains advected Arctic air over central and eastern Asia, resulting in persistent cold spells. Blocking near Greenland related to low-level temperature anomalies led to northerly flow into eastern North America, inducing persistent cold periods. Potential Arctic connections in Europe are less clear. Variability in the North Pacific can reinforce downstream Arctic changes, and Arctic amplification...

335 citations

Journal ArticleDOI
TL;DR: This paper showed that during the last 43 years the Arctic has been warming nearly four times faster than the globe, which is a higher ratio than generally reported in literature, and compared the observed Arctic amplification ratio with the ratio simulated by state-of-the-art climate models, and found that the observed fourfold warming ratio over 1979-2021 is an extremely rare occasion in the climate model simulations.
Abstract: Abstract In recent decades, the warming in the Arctic has been much faster than in the rest of the world, a phenomenon known as Arctic amplification. Numerous studies report that the Arctic is warming either twice, more than twice, or even three times as fast as the globe on average. Here we show, by using several observational datasets which cover the Arctic region, that during the last 43 years the Arctic has been warming nearly four times faster than the globe, which is a higher ratio than generally reported in literature. We compared the observed Arctic amplification ratio with the ratio simulated by state-of-the-art climate models, and found that the observed four-fold warming ratio over 1979–2021 is an extremely rare occasion in the climate model simulations. The observed and simulated amplification ratios are more consistent with each other if calculated over a longer period; however the comparison is obscured by observational uncertainties before 1979. Our results indicate that the recent four-fold Arctic warming ratio is either an extremely unlikely event, or the climate models systematically tend to underestimate the amplification.

295 citations

Journal ArticleDOI
TL;DR: In this article, the authors propose a schema hybride for deriver des cartes de concentration de glace de mer a resolution of 12 km a partir de donnees SSM/I (Special Sensor Microwave Imager).
Abstract: RESUMEDeux algorithmes ont ete utilises dans un schema hybride pour deriver des cartes de concentration de glace de mer a une resolution de 12 km a partir de donnees SSM/I (Special Sensor Microwave Imager). Un des algorithmes est base sur la difference de polarisation a 85 GHz. Le second algorithme est celui de l'equipe de la NASA utilisant les canaux SSM/I a 19 et 37 GHz. L'utilisation des donnees SSM/I a 85 GHz apporte une amelioration importante de la resolution comparativement aux donnees SSM/I a 19 GHz. Dans ce cas, il faut toutefois prendre en consideration la plus grande opacite atmospherique affectant les mesures SSM/I a 85 GHz (influence de la meteo) qui peut entrainer des mesures erronees de la concentration de la glace de mer - en particulier en eau libre. Notre schema combine la haute resolution spatiale des canaux a 85 GHz avec la decision basee sur NTA qui est quasi independante de la temperature, que les points de donnees appartiennent a la partie de mer sans glace ou a la partie recouverte...

294 citations


Cited by
More filters
01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that the rapid Arctic warming has contributed to dramatic melting of Arctic sea ice and spring snow cover, at a pace greater than that simulated by climate models.
Abstract: The Arctic region has warmed more than twice as fast as the global average — a phenomenon known as Arctic amplification. The rapid Arctic warming has contributed to dramatic melting of Arctic sea ice and spring snow cover, at a pace greater than that simulated by climate models. These profound changes to the Arctic system have coincided with a period of ostensibly more frequent extreme weather events across the Northern Hemisphere mid-latitudes, including severe winters. The possibility of a link between Arctic change and mid-latitude weather has spurred research activities that reveal three potential dynamical pathways linking Arctic amplification to mid-latitude weather: changes in storm tracks, the jet stream, and planetary waves and their associated energy propagation. Through changes in these key atmospheric features, it is possible, in principle, for sea ice and snow cover to jointly influence mid-latitude weather. However, because of incomplete knowledge of how high-latitude climate change influences these phenomena, combined with sparse and short data records, and imperfect models, large uncer - tainties regarding the magnitude of such an influence remain. We conclude that improved process understanding, sustained and additional Arctic observations, and better coordinated modelling studies will be needed to advance our understanding of the influences on mid-latitude weather and extreme events.

1,199 citations