scispace - formally typeset
Search or ask a question
Author

Timothy Chen

Bio: Timothy Chen is an academic researcher from Bristol-Myers Squibb. The author has contributed to research in topics: Antibody & CD8. The author has an hindex of 2, co-authored 2 publications receiving 623 citations.
Topics: Antibody, CD8, CTLA-4, Isotype, Immunoglobulin G

Papers
More filters
Journal ArticleDOI
TL;DR: Data suggest that anti-CTLA-4 promotes antitumor activity by a selective reduction of intratumoral Tregs along with concomitant activation of Teffs.
Abstract: Antitumor activity of CTLA-4 antibody blockade is thought to be mediated by interfering with the negative regulation of T-effector cell (Teff) function resulting from CTLA-4 engagement by B7-ligands. In addition, a role for CTLA-4 on regulatory T cells (Treg), wherein CTLA-4 loss or inhibition results in reduced Treg function, may also contribute to antitumor responses by anti-CTLA-4 treatment. We have examined the role of the immunoglobulin constant region on the antitumor activity of anti-CTLA-4 to analyze in greater detail the mechanism of action of anti-CTLA-4 antibodies. Anti-CTLA-4 antibody containing the murine immunoglobulin G (IgG)2a constant region exhibits enhanced antitumor activity in subcutaneous established MC38 and CT26 colon adenocarcinoma tumor models compared with anti-CTLA-4 containing the IgG2b constant region. Interestingly, anti-CTLA-4 antibodies containing mouse IgG1 or a mutated mouse IgG1-D265A, which eliminates binding to all Fcγ receptors (FcγR), do not show antitumor activity in these models. Assessment of Teff and Treg populations at the tumor and in the periphery showed that anti-CTLA-4-IgG2a mediated a rapid and dramatic reduction of Tregs at the tumor site, whereas treatment with each of the isotypes expanded Tregs in the periphery. Expansion of CD8 + Teffs is observed with both the IgG2a and IgG2b anti-CTLA-4 isotypes, resulting in a superior Teff to Treg ratio for the IgG2a isotype. These data suggest that anti-CTLA-4 promotes antitumor activity by a selective reduction of intratumoral Tregs along with concomitant activation of Teffs. Cancer Immunol Res; 1(1); 32–42. ©2013 AACR .

733 citations

Journal ArticleDOI
TL;DR: This work examined the role of the immunoglobulin constant region in the antitumor activity of anti-CTLA-4 Abs in mouse tumor models and identified polymorphisms in the IgG fragment c receptor (FcR) at FCGR3A (V158F) and FCGR2A (H131R) loci.
Abstract: 9055 Background: Anti-CTLA-4 therapy enhances antitumor T-cell responses by both cell-intrinsic and cell-extrinsic mechanisms. Effector T-cell (Teff) activation is increased directly by interfering...

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The immune system recognizes and is poised to eliminate cancer but is held in check by inhibitory receptors and ligands, so drugs interrupting immune checkpoints, such as anti-CTLA-4, anti-PD-1, and others in early development, can unleash anti-tumor immunity and mediate durable cancer regressions.

3,097 citations

Journal ArticleDOI
TL;DR: It is surmised that TAMs can provide tools to tailor the use of cytoreductive therapies and immunotherapy in a personalized medicine approach, and that TAM-focused therapeutic strategies have the potential to complement and synergize with both chemotherapy and immunotherapies.
Abstract: Macrophages are crucial drivers of tumour-promoting inflammation. Tumour-associated macrophages (TAMs) contribute to tumour progression at different levels: by promoting genetic instability, nurturing cancer stem cells, supporting metastasis, and taming protective adaptive immunity. TAMs can exert a dual, yin-yang influence on the effectiveness of cytoreductive therapies (chemotherapy and radiotherapy), either antagonizing the antitumour activity of these treatments by orchestrating a tumour-promoting, tissue-repair response or, instead, enhancing the overall antineoplastic effect. TAMs express molecular triggers of checkpoint proteins that regulate T-cell activation, and are targets of certain checkpoint-blockade immunotherapies. Other macrophage-centred approaches to anticancer therapy are under investigation, and include: inhibition of macrophage recruitment to, and/or survival in, tumours; functional re-education of TAMs to an antitumour, 'M1-like' mode; and tumour-targeting monoclonal antibodies that elicit macrophage-mediated extracellular killing, or phagocytosis and intracellular destruction of cancer cells. The evidence supporting these strategies is reviewed herein. We surmise that TAMs can provide tools to tailor the use of cytoreductive therapies and immunotherapy in a personalized medicine approach, and that TAM-focused therapeutic strategies have the potential to complement and synergize with both chemotherapy and immunotherapy.

2,338 citations

Journal ArticleDOI
TL;DR: The current state of understanding of T-cell costimulatory mechanisms and checkpoint blockade, primarily of CTLA4 and PD-1, is reviewed, and conceptual gaps in knowledge are highlighted.
Abstract: Immune checkpoint blockade is able to induce durable responses across multiple types of cancer, which has enabled the oncology community to begin to envision potentially curative therapeutic approaches. However, the remarkable responses to immunotherapies are currently limited to a minority of patients and indications, highlighting the need for more effective and novel approaches. Indeed, an extraordinary amount of preclinical and clinical investigation is exploring the therapeutic potential of negative and positive costimulatory molecules. Insights into the underlying biological mechanisms and functions of these molecules have, however, lagged significantly behind. Such understanding will be essential for the rational design of next-generation immunotherapies. Here, we review the current state of our understanding of T-cell costimulatory mechanisms and checkpoint blockade, primarily of CTLA4 and PD-1, and highlight conceptual gaps in knowledge. Significance: This review provides an overview of immune checkpoint blockade therapy from a basic biology and immunologic perspective for the cancer research community. Cancer Discov; 8(9); 1069–86. ©2018 AACR.

1,893 citations

Journal ArticleDOI
TL;DR: Anti–CTLA-4 antibody induces selective depletion of T reg cells within tumor lesions in a manner that is dependent on the presence of Fc gamma receptor-expressing macrophages within the tumor microenvironment.
Abstract: Treatment with monoclonal antibody specific for cytotoxic T lymphocyte–associated antigen 4 (CTLA-4), an inhibitory receptor expressed by T lymphocytes, has emerged as an effective therapy for the treatment of metastatic melanoma. Although subject to debate, current models favor a mechanism of activity involving blockade of the inhibitory activity of CTLA-4 on both effector (T eff) and regulatory (T reg) T cells, resulting in enhanced antitumor effector T cell activity capable of inducing tumor regression. We demonstrate, however, that the activity of anti–CTLA-4 antibody on the T reg cell compartment is mediated via selective depletion of T reg cells within tumor lesions. Importantly, T reg cell depletion is dependent on the presence of Fcγ receptor–expressing macrophages within the tumor microenvironment, indicating that T reg cells are depleted in trans in a context-dependent manner. Our results reveal further mechanistic insight into the activity of anti-CTLA-4–based cancer immunotherapy, and illustrate the importance of specific features of the local tumor environment on the final outcome of antibody-based immunomodulatory therapies.

1,225 citations

Journal ArticleDOI
TL;DR: It is hoped that combination of Treg-cell targeting with the activation of tumor-specific effector T cells will make the current cancer immunotherapy more effective.
Abstract: FOXP3-expressing regulatory T (Treg) cells, which suppress aberrant immune response against self-antigens, also suppress anti-tumor immune response. Infiltration of a large number of Treg cells into tumor tissues is often associated with poor prognosis. There is accumulating evidence that the removal of Treg cells is able to evoke and enhance anti-tumor immune response. However, systemic depletion of Treg cells may concurrently elicit deleterious autoimmunity. One strategy for evoking effective tumor immunity without autoimmunity is to specifically target terminally differentiated effector Treg cells rather than all FOXP3+ T cells, because effector Treg cells are the predominant cell type in tumor tissues. Various cell surface molecules, including chemokine receptors such as CCR4, that are specifically expressed by effector Treg cells can be the candidates for depleting effector Treg cells by specific cell-depleting monoclonal antibodies. In addition, other immunological characteristics of effector Treg cells, such as their high expression of CTLA-4, active proliferation, and apoptosis-prone tendency, can be exploited to control specifically their functions. For example, anti-CTLA-4 antibody may kill effector Treg cells or attenuate their suppressive activity. It is hoped that combination of Treg-cell targeting (e.g., by reducing Treg cells or attenuating their suppressive activity in tumor tissues) with the activation of tumor-specific effector T cells (e.g., by cancer vaccine or immune checkpoint blockade) will make the current cancer immunotherapy more effective.

1,193 citations