scispace - formally typeset
Search or ask a question
Author

Timothy E. Glassman

Bio: Timothy E. Glassman is an academic researcher from Intel. The author has contributed to research in topics: Layer (electronics) & Dielectric. The author has an hindex of 7, co-authored 18 publications receiving 1168 citations.

Papers
More filters
Proceedings ArticleDOI
12 Jun 2012
TL;DR: In this paper, a 22nm generation logic technology is described incorporating fully-depleted tri-gate transistors for the first time, which provides steep sub-threshold slopes (∼70mV/dec) and very low DIBL ( ∼50m V/V).
Abstract: A 22nm generation logic technology is described incorporating fully-depleted tri-gate transistors for the first time. These transistors feature a 3rd-generation high-k + metal-gate technology and a 5th generation of channel strain techniques resulting in the highest drive currents yet reported for NMOS and PMOS. The use of tri-gate transistors provides steep subthreshold slopes (∼70mV/dec) and very low DIBL (∼50mV/V). Self-aligned contacts are implemented to eliminate restrictive contact to gate registration requirements. Interconnects feature 9 metal layers with ultra-low-k dielectrics throughout the interconnect stack. High density MIM capacitors using a hafnium based high-k dielectric are provided. The technology is in high volume manufacturing.

705 citations

Proceedings ArticleDOI
17 Jun 2008
TL;DR: In this article, two key process features that are used to make 45 nm generation metal gate + high-k gate dielectric CMOS transistors are highlighted in this paper.
Abstract: Two key process features that are used to make 45 nm generation metal gate + high-k gate dielectric CMOS transistors are highlighted in this paper. The first feature is the integration of stress-enhancement techniques with the dual metal-gate + high-k transistors. The second feature is the extension of 193 nm dry lithography to the 45 nm technology node pitches. Use of these features has enabled industry-leading transistor performance and the first high volume 45 nm high-k + metal gate technology.

266 citations

Patent
14 Dec 2011
TL;DR: In this paper, metal-insulator-metal (MIM) capacitors with insulator stacks having a plurality of metal oxide layers are described, and the MIM capacitor also includes a second metal plate disposed above and conformal with the insulator stack.
Abstract: Metal-insulator-metal (MIM) capacitors with insulator stacks having a plurality of metal oxide layers are described. For example, a MIM capacitor for a semiconductor device includes a trench disposed in a dielectric layer disposed above a substrate. A first metal plate is disposed along the bottom and sidewalls of the trench. An insulator stack is disposed above and conformal with the first metal plate. The insulator stack includes a first metal oxide layer having a first dielectric constant and a second metal oxide layer having a second dielectric constant. The first dielectric constant is higher than the second dielectric constant. The MIM capacitor also includes a second metal plate disposed above and conformal with the insulator stack.

123 citations

Patent
20 Dec 2011
TL;DR: In this article, the authors proposed a conformal hermetic diffusion barrier for 3D topography, which includes a dielectric layer, such as a metal oxide, which can be deposited by atomic layer deposition (ALD) techniques with conformality and density greater than can be achieved in a conventional silicon dioxide-based film.
Abstract: Conformal hermetic dielectric films suitable as dielectric diffusion barriers over 3D topography. In embodiments, the dielectric diffusion barrier includes a dielectric layer, such as a metal oxide, which can be deposited by atomic layer deposition (ALD) techniques with a conformality and density greater than can be achieved in a conventional silicon dioxide-based film deposited by a PECVD process for a thinner contiguous hermetic diffusion barrier. In further embodiments, the diffusion barrier is a multi-layered film including a high-k dielectric layer and a low-k or intermediate-k dielectric layer (e.g., a bi-layer) to reduce the dielectric constant of the diffusion barrier. In other embodiments a silicate of a high-k dielectric layer (e.g., a metal silicate) is formed to lower the k-value of the diffusion barrier by adjusting the silicon content of the silicate while maintaining high film conformality and density.

50 citations

Proceedings ArticleDOI
04 Jun 2012
TL;DR: In this paper, the authors describe interconnect features for Intel's 22nm high-performance logic technology, with metal-insulator-metal capacitors and nine layers of interconnects.
Abstract: We describe interconnect features for Intel's 22nm high-performance logic technology, with metal-insulator-metal capacitors and nine layers of interconnects. Metal-1 through Metal-6 feature a new ultra-low-k carbon doped oxide (CDO) and a low-k etch stop. Metal-7 and Metal-8 use a low-k CDO. New materials and process optimization provide 13–18% capacitance improvement. Single-exposure patterning for 80nm pitch layers makes the process cost-effective.

44 citations


Cited by
More filters
Proceedings ArticleDOI
12 Dec 2009
TL;DR: Combining power, area, and timing results of McPAT with performance simulation of PARSEC benchmarks at the 22nm technology node for both common in-order and out-of-order manycore designs shows that when die cost is not taken into account clustering 8 cores together gives the best energy-delay product, whereas when cost is taking into account configuring clusters with 4 cores gives thebest EDA2P and EDAP.
Abstract: This paper introduces McPAT, an integrated power, area, and timing modeling framework that supports comprehensive design space exploration for multicore and manycore processor configurations ranging from 90nm to 22nm and beyond. At the microarchitectural level, McPAT includes models for the fundamental components of a chip multiprocessor, including in-order and out-of-order processor cores, networks-on-chip, shared caches, integrated memory controllers, and multiple-domain clocking. At the circuit and technology levels, McPAT supports critical-path timing modeling, area modeling, and dynamic, short-circuit, and leakage power modeling for each of the device types forecast in the ITRS roadmap including bulk CMOS, SOI, and double-gate transistors. McPAT has a flexible XML interface to facilitate its use with many performance simulators. Combined with a performance simulator, McPAT enables architects to consistently quantify the cost of new ideas and assess tradeoffs of different architectures using new metrics like energy-delay-area2 product (EDA2P) and energy-delay-area product (EDAP). This paper explores the interconnect options of future manycore processors by varying the degree of clustering over generations of process technologies. Clustering will bring interesting tradeoffs between area and performance because the interconnects needed to group cores into clusters incur area overhead, but many applications can make good use of them due to synergies of cache sharing. Combining power, area, and timing results of McPAT with performance simulation of PARSEC benchmarks at the 22nm technology node for both common in-order and out-of-order manycore designs shows that when die cost is not taken into account clustering 8 cores together gives the best energy-delay product, whereas when cost is taken into account configuring clusters with 4 cores gives the best EDA2P and EDAP.

2,487 citations

Journal ArticleDOI
01 Sep 2019-Nature
TL;DR: The opportunities, progress and challenges of integrating atomically thin materials with silicon-based nanosystems are reviewed, and the prospects for computational and non-computational applications are considered.
Abstract: The development of silicon semiconductor technology has produced breakthroughs in electronics—from the microprocessor in the late 1960s to early 1970s, to automation, computers and smartphones—by downscaling the physical size of devices and wires to the nanometre regime. Now, graphene and related two-dimensional (2D) materials offer prospects of unprecedented advances in device performance at the atomic limit, and a synergistic combination of 2D materials with silicon chips promises a heterogeneous platform to deliver massively enhanced potential based on silicon technology. Integration is achieved via three-dimensional monolithic construction of multifunctional high-rise 2D silicon chips, enabling enhanced performance by exploiting the vertical direction and the functional diversification of the silicon platform for applications in opto-electronics and sensing. Here we review the opportunities, progress and challenges of integrating atomically thin materials with silicon-based nanosystems, and also consider the prospects for computational and non-computational applications. Progress in integrating atomically thin two-dimensional materials with silicon-based technology is reviewed, together with the associated opportunities and challenges, and a roadmap for future applications is presented.

804 citations

Journal ArticleDOI
K. Kuhn1
TL;DR: Transistor architectures such as extremely thin silicon-on-insulator and FinFET (and related architecture such as TriGate, Omega-FET, Pi-Gate), as well as nanowire device architectures, are compared and contrasted.
Abstract: This review paper explores considerations for ultimate CMOS transistor scaling Transistor architectures such as extremely thin silicon-on-insulator and FinFET (and related architectures such as TriGate, Omega-FET, Pi-Gate), as well as nanowire device architectures, are compared and contrasted Key technology challenges (such as advanced gate stacks, mobility, resistance, and capacitance) shared by all of the architectures will be discussed in relation to recent research results

558 citations

Journal ArticleDOI
Dmitri E. Nikonov1, Ian A. Young1
07 Jun 2013
TL;DR: Structural and operational principles of multiple logic devices under study within the NRI to carry the development of integrated circuits beyond the complementary metal-oxide-semiconductor (CMOS) roadmap are described, and theories used for benchmarking these devices are overviewed.
Abstract: Multiple logic devices are presently under study within the Nanoelectronic Research Initiative (NRI) to carry the development of integrated circuits beyond the complementary metal-oxide-semiconductor (CMOS) roadmap. Structure and operational principles of these devices are described. Theories used for benchmarking these devices are overviewed, and a general methodology is described for consistent estimates of the circuit area, switching time, and energy. The results of the comparison of the NRI logic devices using these benchmarks are presented.

450 citations

Patent
19 Aug 2010
TL;DR: In this article, a system includes a semiconductor device consisting of a first single crystal silicon layer comprising first transistors, first alignment marks, and at least one metal layer overlying the first single-crystalline silicon layer.
Abstract: A system includes a semiconductor device. The semiconductor device includes a first single crystal silicon layer comprising first transistors, first alignment marks, and at least one metal layer overlying the first single crystal silicon layer, wherein the at least one metal layer comprises copper or aluminum more than other materials; and a second single crystal silicon layer overlying the at least one metal layer. The second single crystal silicon layer comprises a plurality of second transistors arranged in substantially parallel bands. Each of a plurality of the bands comprises a portion of the second transistors along an axis in a repeating pattern.

417 citations