scispace - formally typeset
Search or ask a question
Author

Timothy F. Cootes

Bio: Timothy F. Cootes is an academic researcher from University of Manchester. The author has contributed to research in topics: Active appearance model & Active shape model. The author has an hindex of 70, co-authored 306 publications receiving 38335 citations. Previous affiliations of Timothy F. Cootes include RMIT University & Victoria University of Manchester.


Papers
More filters
Journal ArticleDOI
TL;DR: This work describes a method for building models by learning patterns of variability from a training set of correctly annotated images that can be used for image search in an iterative refinement algorithm analogous to that employed by Active Contour Models (Snakes).

7,969 citations

Journal ArticleDOI
Abstract: We describe a new method of matching statistical models of appearance to images. A set of model parameters control modes of shape and gray-level variation learned from a training set. We construct an efficient iterative matching algorithm by learning the relationship between perturbations in the model parameters and the induced image errors.

6,200 citations

Book ChapterDOI
02 Jun 1998
TL;DR: A novel method of interpreting images using an Active Appearance Model (AAM), a statistical model of the shape and grey-level appearance of the object of interest which can generalise to almost any valid example.
Abstract: We demonstrate a novel method of interpreting images using an Active Appearance Model (AAM). An AAM contains a statistical model of the shape and grey-level appearance of the object of interest which can generalise to almost any valid example. During a training phase we learn the relationship between model parameter displacements and the residual errors induced between a training image and a synthesised model example. To match to an image we measure the current residuals and use the model to predict changes to the current parameters, leading to a better fit. A good overall match is obtained in a few iterations, even from poor starting estimates. We describe the technique in detail and give results of quantitative performance tests. We anticipate that the AAM algorithm will be an important method for locating deformable objects in many applications.

3,905 citations

Journal ArticleDOI
TL;DR: This paper describes a technique for building compact models of the shape and appearance of flexible objects seen in 2D images, derived from the statistics of labelled images containing examples of the objects.

973 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of aging on facial appearance can be explained using learned age transformations and present experimental results to show that reasonably accurate estimates of age can be made for unseen images.
Abstract: The process of aging causes significant alterations in the facial appearance of individuals When compared with other sources of variation in face images, appearance variation due to aging displays some unique characteristics Changes in facial appearance due to aging can even affect discriminatory facial features, resulting in deterioration of the ability of humans and machines to identify aged individuals We describe how the effects of aging on facial appearance can be explained using learned age transformations and present experimental results to show that reasonably accurate estimates of age can be made for unseen images We also show that we can improve our results by taking into account the fact that different individuals age in different ways and by considering the effect of lifestyle Our proposed framework can be used for simulating aging effects on new face images in order to predict how an individual might look like in the future or how he/she used to look in the past The methodology presented has also been used for designing a face recognition system, robust to aging variation In this context, the perceived age of the subjects in the training and test images is normalized before the training and classification procedure so that aging variation is eliminated Experimental results demonstrate that, when age normalization is used, the performance of our face recognition system can be improved

933 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: A face recognition algorithm which is insensitive to large variation in lighting direction and facial expression is developed, based on Fisher's linear discriminant and produces well separated classes in a low-dimensional subspace, even under severe variations in lighting and facial expressions.
Abstract: We develop a face recognition algorithm which is insensitive to large variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images of a particular face, under varying illumination but fixed pose, lie in a 3D linear subspace of the high dimensional image space-if the face is a Lambertian surface without shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce self-shadowing, images will deviate from this linear subspace. Rather than explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fisher's linear discriminant and produces well separated classes in a low-dimensional subspace, even under severe variation in lighting and facial expressions. The eigenface technique, another method based on linearly projecting the image space to a low dimensional subspace, has similar computational requirements. Yet, extensive experimental results demonstrate that the proposed "Fisherface" method has error rates that are lower than those of the eigenface technique for tests on the Harvard and Yale face databases.

11,674 citations

Journal ArticleDOI
TL;DR: An object detection system based on mixtures of multiscale deformable part models that is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges is described.
Abstract: We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the PASCAL data sets. Our system relies on new methods for discriminative training with partially labeled data. We combine a margin-sensitive approach for data-mining hard negative examples with a formalism we call latent SVM. A latent SVM is a reformulation of MI--SVM in terms of latent variables. A latent SVM is semiconvex, and the training problem becomes convex once latent information is specified for the positive examples. This leads to an iterative training algorithm that alternates between fixing latent values for positive examples and optimizing the latent SVM objective function.

10,501 citations

Journal ArticleDOI
TL;DR: This work describes a method for building models by learning patterns of variability from a training set of correctly annotated images that can be used for image search in an iterative refinement algorithm analogous to that employed by Active Contour Models (Snakes).

7,969 citations

Journal ArticleDOI
TL;DR: This paper presents work on computing shape models that are computationally fast and invariant basic transformations like translation, scaling and rotation, and proposes shape detection using a feature called shape context, which is descriptive of the shape of the object.
Abstract: We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by: (1) solving for correspondences between points on the two shapes; (2) using the correspondences to estimate an aligning transform. In order to solve the correspondence problem, we attach a descriptor, the shape context, to each point. The shape context at a reference point captures the distribution of the remaining points relative to it, thus offering a globally discriminative characterization. Corresponding points on two similar shapes will have similar shape contexts, enabling us to solve for correspondences as an optimal assignment problem. Given the point correspondences, we estimate the transformation that best aligns the two shapes; regularized thin-plate splines provide a flexible class of transformation maps for this purpose. The dissimilarity between the two shapes is computed as a sum of matching errors between corresponding points, together with a term measuring the magnitude of the aligning transform. We treat recognition in a nearest-neighbor classification framework as the problem of finding the stored prototype shape that is maximally similar to that in the image. Results are presented for silhouettes, trademarks, handwritten digits, and the COIL data set.

6,693 citations