scispace - formally typeset
Search or ask a question
Author

Timothy G. Holland

Other affiliations: McGill University
Bio: Timothy G. Holland is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Ecosystem services & Land degradation. The author has an hindex of 8, co-authored 11 publications receiving 840 citations. Previous affiliations of Timothy G. Holland include McGill University.

Papers
More filters
Journal ArticleDOI
TL;DR: The Millennium Ecosystem Assessment paradoxically found that human well-being has increased despite large global declines in most ecosystem services as discussed by the authors, and the authors assess four explanations of these divergent trends: (1) We have measured wellbeing incorrectly; (2) wellbeing is dependent on food services, which are increasing, and not on other services that are declining.
Abstract: Environmentalists have argued that ecological degradation will lead to declines in the well-being of people dependent on ecosystem services. The Millennium Ecosystem Assessment paradoxically found that human well-being has increased despite large global declines in most ecosystem services. We assess four explanations of these divergent trends: (1) We have measured well-being incorrectly; (2) well-being is dependent on food services, which are increasing, and not on other services that are declining; (3) technology has decoupled well-being from nature; (4) time lags may lead to future declines in well-being. Our findings discount the first hypothesis, but elements of the remaining three appear plausible. Although ecologists have convincingly documented ecological decline, science does not adequately understand the implications of this decline for human well-being. Untangling how human well-being has increased as ecosystem conditions decline is critical to guiding future management of ecosystem services; we propose four research areas to help achieve this goal.

415 citations

Journal ArticleDOI
TL;DR: It is speculated that interactions with humans may be linked to the observed patterns of infections, and hence that understanding the ecology of infectious diseases in nonhuman primates is of paramount importance for conservation and potentially for human‐health planning.
Abstract: Humans are responsible for massive changes to primate habitats, and one unanticipated consequence of these alterations may be changes in host-parasite interactions. Edges are a ubiquitous aspect of human disturbance to forest landscapes. Here we examine how changes associated with the creation of edges in Kibale National Park, Uganda, alter the parasite community that is supported by two species of African colobines: the endangered red colobus (Piliocolobus tephrosceles) and the black-and-white colobus (Colobus guereza). An analysis of 822 fecal samples from edge and forest interior groups revealed no difference in the richness of parasite communities (i.e., the number of parasite species recovered from the host's fecal sample). However, for both species the proportion of individuals with multiple infections was greater in edge than forest interior groups. The prevalence of specific parasites also varied between edge and forest interior groups. Oesophagostomum sp., a potentially deleterious parasite, was 7.4 times more prevalent in red colobus on the edge than in those in the forest interior, and Entamoeba coli was four times more prevalent in red colobus on the edge than in animals from the forest interior. Environmental contamination with parasites (measured as parasite eggs/gm feces) by red colobus from the edge and forest interior differed in a similar fashion to prevalence for red colobus, but it did not differ for black-and-white colobus. For example, egg counts of Oesophagostomum sp. were 10 times higher in red colobus from the edge than in those from the interior. The less severe infections in the black-and-white colobus relative to the red colobus may reflect the fact that black-and-white colobus raid agricultural crops while red colobus do not. This nutritional gain may facilitate a more effective immune response to parasites by the black-and-white colobus. The fact that animals on the edge are likely not nutritionally stressed raises an intriguing question as to what facilitates the elevated infections in edge animals. We speculate that interactions with humans may be linked to the observed patterns of infections, and hence that understanding the ecology of infectious diseases in nonhuman primates is of paramount importance for conservation and potentially for human-health planning.

115 citations

Journal ArticleDOI
TL;DR: Inequality was a significant predictor of biodiversity loss and significantly improved the fit of the models, confirming that socioeconomic inequality is an important factor to consider when predicting rates of anthropogenic biodiversity loss.
Abstract: We used socioeconomic models that included economic inequality to predict biodiversity loss, measured as the proportion of threatened plant and vertebrate species, across 50 countries. Our main goal was to evaluate whether economic inequality, measured as the Gini index of income distribution, improved the explanatory power of our statistical models. We compared four models that included the following: only population density, economic footprint (i.e., the size of the economy relative to the country area), economic footprint and income inequality (Gini index), and an index of environmental governance. We also tested the environmental Kuznets curve hypothesis, but it was not supported by the data. Statistical comparisons of the models revealed that the model including both economic footprint and inequality was the best predictor of threatened species. It significantly outperformed population density alone and the environmental governance model according to the Akaike information criterion. Inequality was a significant predictor of biodiversity loss and significantly improved the fit of our models. These results confirm that socioeconomic inequality is an important factor to consider when predicting rates of anthropogenic biodiversity loss.

99 citations

Journal ArticleDOI
TL;DR: The potential of genetically modified organisms (GMOs) from the perspectives of various stakeholders is discussed in this article, where the benefits of this technology are shared among innovators, farmers, and consumers.
Abstract: Population growth, climate change, and increasing human impact on land and aquatic systems all pose significant challenges for current agricultural practices. Genetic engineering is a tool to speed up breeding for new varieties, which can help farmers and agricultural systems adapt to rapidly changing physical growing conditions, technology, and global markets. We review the current scientific literature and present the potential of genetically modified organisms (GMOs) from the perspectives of various stakeholders. GMOs increase yields, lower costs, and reduce the land and environmental footprint of agriculture. The benefits of this technology are shared among innovators, farmers, and consumers. Developing countries and poor farmers gain substantially from GMOs. Agricultural biotechnology is diverse, with many applications having different potential impacts. Its regulation needs to balance benefits and risks for each application. Excessive precaution prevents significant benefits. Increasing access to the technology and avoidance of excessive regulation will allow it to reach its potential.

62 citations


Cited by
More filters
01 Jan 2015
TL;DR: The work of the IPCC Working Group III 5th Assessment report as mentioned in this paper is a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change, which has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.
Abstract: The talk with present the key results of the IPCC Working Group III 5th assessment report. Concluding four years of intense scientific collaboration by hundreds of authors from around the world, the report responds to the request of the world's governments for a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change. The report has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.

3,224 citations

Journal ArticleDOI
TL;DR: In this paper, the authors identify three categories of challenges that have to be addressed to maintain and enhance human health in the face of increasingly harmful environmental trends: conceptual and empathy failures (imagination challenges), such as an overreliance on gross domestic product as a measure of human progress, the failure to account for future health and environmental harms over present day gains, and the disproportionate eff ect of those harms on the poor and those in developing nations.

1,452 citations

Journal ArticleDOI
25 Oct 2011
TL;DR: The Anthropocene is a reminder that the Holocene, during which complex human societies have developed, has been a stable, accommodating environment and is the only state of the Earth System that the authors know for sure can support contemporary society.
Abstract: Over the past century, the total material wealth of humanity has been enhanced. However, in the twenty-first century, we face scarcity in critical resources, the degradation of ecosystem services, and the erosion of the planet’s capability to absorb our wastes. Equity issues remain stubbornly difficult to solve. This situation is novel in its speed, its global scale and its threat to the resilience of the Earth System. The advent of the Anthropence, the time interval in which human activities now rival global geophysical processes, suggests that we need to fundamentally alter our relationship with the planet we inhabit. Many approaches could be adopted, ranging from geo-engineering solutions that purposefully manipulate parts of the Earth System to becoming active stewards of our own life support system. The Anthropocene is a reminder that the Holocene, during which complex human societies have developed, has been a stable, accommodating environment and is the only state of the Earth System that we know for sure can support contemporary society. The need to achieve effective planetary stewardship is urgent. As we go further into the Anthropocene, we risk driving the Earth System onto a trajectory toward more hostile states from which we cannot easily return.

1,222 citations

Journal ArticleDOI
TL;DR: Landscape sustainability is defined as the capacity of a landscape to consistently provide long-term, landscape-specific ecosystem services essential for maintaining and improving human well-being as discussed by the authors, which is a place-based, use-inspired science of understanding and improving the dynamic relationship between ecosystem services and human wellbeing in changing landscapes under uncertainties arising from internal feedbacks and external disturbances.
Abstract: The future of humanity depends on whether or not we have a vision to guide our transition toward sustainability, on scales ranging from local landscapes to the planet as a whole. Sustainability science is at the core of this vision, and landscapes and regions represent a pivotal scale domain. The main objectives of this paper are: (1) to elucidate key definitions and concepts of sustainability, including the Brundtland definition, the triple bottom line, weak and strong sustainability, resilience, human well-being, and ecosystem services; (2) to examine key definitions and concepts of landscape sustainability, including those derived from general concepts and those developed for specific landscapes; and (3) to propose a framework for developing a science of landscape sustainability. Landscape sustainability is defined as the capacity of a landscape to consistently provide long-term, landscape-specific ecosystem services essential for maintaining and improving human well-being. Fundamentally, well-being is a journey, not a destination. Landscape sustainability science is a place-based, use-inspired science of understanding and improving the dynamic relationship between ecosystem services and human well-being in changing landscapes under uncertainties arising from internal feedbacks and external disturbances. While landscape sustainability science emphasizes place-based research on landscape and regional scales, significant between landscape interactions and hierarchical linkages to both finer and broader scales (or externalities) must not be ignored. To advance landscape sustainability science, spatially explicit methods are essential, especially experimental approaches that take advantage of designed landscapes and multi-scaled simulation models that couple the dynamics of landscape services (ecosystem services provided by multiple landscape elements in combination as emergent properties) and human well-being.

989 citations

Journal ArticleDOI
13 Dec 2019-Science
TL;DR: The first integrated global-scale intergovernmental assessment of the status, trends, and future of the links between people and nature provides an unprecedented picture of the extent of the authors' mutual dependence, the breadth and depth of the ongoing and impending crisis, and the interconnectedness among sectors and regions.
Abstract: The human impact on life on Earth has increased sharply since the 1970s, driven by the demands of a growing population with rising average per capita income. Nature is currently supplying more materials than ever before, but this has come at the high cost of unprecedented global declines in the extent and integrity of ecosystems, distinctness of local ecological communities, abundance and number of wild species, and the number of local domesticated varieties. Such changes reduce vital benefits that people receive from nature and threaten the quality of life of future generations. Both the benefits of an expanding economy and the costs of reducing nature's benefits are unequally distributed. The fabric of life on which we all depend-nature and its contributions to people-is unravelling rapidly. Despite the severity of the threats and lack of enough progress in tackling them to date, opportunities exist to change future trajectories through transformative action. Such action must begin immediately, however, and address the root economic, social, and technological causes of nature's deterioration.

913 citations