scispace - formally typeset
Search or ask a question
Author

Timothy J. Nott

Bio: Timothy J. Nott is an academic researcher from University of Oxford. The author has contributed to research in topics: Peptide library & Phosphothreonine. The author has an hindex of 10, co-authored 12 publications receiving 2008 citations. Previous affiliations of Timothy J. Nott include University of Toronto & National Institute for Medical Research.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that the disordered tails of Ddx4, a primary constituent of nuage or germ granules, form phase-separated organelles both in live cells and in vitro, and proposed that phase separation of disordered proteins containing weakly interacting blocks is a general mechanism for forming regulated, membraneless organlles.

1,307 citations

Journal ArticleDOI
TL;DR: Observation of a network of interchain interactions, as established by NOE spectroscopy, shows the importance of Phe and Arg interactions in driving the phase separation of Ddx4, while the salt dependence of both low- and high-concentration regions of phase diagrams establishes an important role for electrostatic interactions.
Abstract: Membrane encapsulation is frequently used by the cell to sequester biomolecules and compartmentalize their function. Cells also concentrate molecules into phase-separated protein or protein/nucleic acid "membraneless organelles" that regulate a host of biochemical processes. Here, we use solution NMR spectroscopy to study phase-separated droplets formed from the intrinsically disordered N-terminal 236 residues of the germ-granule protein Ddx4. We show that the protein within the concentrated phase of phase-separated Ddx4, [Formula: see text], diffuses as a particle of 600-nm hydrodynamic radius dissolved in water. However, NMR spectra reveal sharp resonances with chemical shifts showing [Formula: see text] to be intrinsically disordered. Spin relaxation measurements indicate that the backbone amides of [Formula: see text] have significant mobility, explaining why high-resolution spectra are observed, but motion is reduced compared with an equivalently concentrated nonphase-separating control. Observation of a network of interchain interactions, as established by NOE spectroscopy, shows the importance of Phe and Arg interactions in driving the phase separation of Ddx4, while the salt dependence of both low- and high-concentration regions of phase diagrams establishes an important role for electrostatic interactions. The diffusion of a series of small probes and the compact but disordered 4E binding protein 2 (4E-BP2) protein in [Formula: see text] are explained by an excluded volume effect, similar to that found for globular protein solvents. No changes in structural propensities of 4E-BP2 dissolved in [Formula: see text] are observed, while changes to DNA and RNA molecules have been reported, highlighting the diverse roles that proteinaceous solvents play in dictating the properties of dissolved solutes.

343 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the solvent environment within the interior of these cellular bodies behaves more like an organic solvent than like water, revealing that cells have also evolved this capability by exploiting the interiors of membraneless organelles.
Abstract: Membraneless organelles are cellular compartments made from drops of liquid protein inside a cell These compartments assemble via the phase separation of disordered regions of proteins in response to changes in the cellular environment and the cell cycle Here we demonstrate that the solvent environment within the interior of these cellular bodies behaves more like an organic solvent than like water One of the most-stable biological structures known, the DNA double helix, can be melted once inside the liquid droplet, and simultaneously structures formed from regulatory single-stranded nucleic acids are stabilized Moreover, proteins are shown to have a wide range of absorption or exclusion from these bodies, and can act as importers for otherwise-excluded nucleic acids, which suggests the existence of a protein-mediated trafficking system A common strategy in organic chemistry is to utilize different solvents to influence the behaviour of molecules and reactions These results reveal that cells have also evolved this capability by exploiting the interiors of membraneless organelles

263 citations

Journal ArticleDOI
TL;DR: Tudor proteins are now known to be present in PIWI complexes, where they are thought to interact with methylated PIWI proteins and regulate the PIWI-interacting RNA (piRNA) pathway in the germ line.
Abstract: Proteins can be modified by post-translational modifications such as phosphorylation, methylation, acetylation and ubiquitylation, creating binding sites for specific protein domains. Methylation has pivotal roles in the formation of complexes that are involved in cellular regulation, including in the generation of small RNAs. Arginine methylation was discovered half a century ago, but the ability of methylarginine sites to serve as binding motifs for members of the Tudor protein family, and the functional significance of the protein-protein interactions that are mediated by Tudor domains, has only recently been appreciated. Tudor proteins are now known to be present in PIWI complexes, where they are thought to interact with methylated PIWI proteins and regulate the PIWI-interacting RNA (piRNA) pathway in the germ line.

258 citations

Journal ArticleDOI
TL;DR: A role for dimerization-dependent allosteric regulation that combines with autophosphorylation and proteinosphatase 1c phosphatase activity to generate the precise spatial and temporal control required for Nek2 function in centrosomal maturation is suggested.

107 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work has shown that liquid–liquid phase separation driven by multivalent macromolecular interactions is an important organizing principle for biomolecular condensates and has proposed a physical framework for this organizing principle.
Abstract: In addition to membrane-bound organelles, eukaryotic cells feature various membraneless compartments, including the centrosome, the nucleolus and various granules. Many of these compartments form through liquid–liquid phase separation, and the principles, mechanisms and regulation of their assembly as well as their cellular functions are now beginning to emerge. Biomolecular condensates are micron-scale compartments in eukaryotic cells that lack surrounding membranes but function to concentrate proteins and nucleic acids. These condensates are involved in diverse processes, including RNA metabolism, ribosome biogenesis, the DNA damage response and signal transduction. Recent studies have shown that liquid–liquid phase separation driven by multivalent macromolecular interactions is an important organizing principle for biomolecular condensates. With this physical framework, it is now possible to explain how the assembly, composition, physical properties and biochemical and cellular functions of these important structures are regulated.

3,294 citations

Journal ArticleDOI
22 Sep 2017-Science
TL;DR: The findings together suggest that several membrane-less organelles have been shown to exhibit a concentration threshold for assembly, a hallmark of phase separation, and represent liquid-phase condensates, which form via a biologically regulated (liquid-liquid) phase separation process.
Abstract: BACKGROUND Living cells contain distinct subcompartments to facilitate spatiotemporal regulation of biological reactions. In addition to canonical membrane-bound organelles such as secretory vesicles and endoplasmic reticulum, there are many organelles that do not have an enclosing membrane yet remain coherent structures that can compartmentalize and concentrate specific sets of molecules. Examples include assemblies in the nucleus such as the nucleolus, Cajal bodies, and nuclear speckles and also cytoplasmic structures such as stress granules, P-bodies, and germ granules. These structures play diverse roles in various biological processes and are also increasingly implicated in protein aggregation diseases. ADVANCES A number of studies have shown that membrane-less assemblies exhibit remarkable liquid-like features. As with conventional liquids, they typically adopt round morphologies and coalesce into a single droplet upon contact with one another and also wet intracellular surfaces such as the nuclear envelope. Moreover, component molecules exhibit dynamic exchange with the surrounding nucleoplasm and cytoplasm. These findings together suggest that these structures represent liquid-phase condensates, which form via a biologically regulated (liquid-liquid) phase separation process. Liquid phase condensation increasingly appears to be a fundamental mechanism for organizing intracellular space. Consistent with this concept, several membrane-less organelles have been shown to exhibit a concentration threshold for assembly, a hallmark of phase separation. At the molecular level, weak, transient interactions between molecules with multivalent domains or intrinsically disordered regions (IDRs) are a driving force for phase separation. In cells, condensation of liquid-phase assemblies can be regulated by active processes, including transcription and various posttranslational modifications. The simplest physical picture of a homogeneous liquid phase is often not enough to capture the full complexity of intracellular condensates, which frequently exhibit heterogeneous multilayered structures with partially solid-like characters. However, recent studies have shown that multiple distinct liquid phases can coexist and give rise to richly structured droplet architectures determined by the relative liquid surface tensions. Moreover, solid-like phases can emerge from metastable liquid condensates via multiple routes of potentially both kinetic and thermodynamic origins, which has important implications for the role of intracellular liquids in protein aggregation pathologies. OUTLOOK The list of intracellular assemblies driven by liquid phase condensation is growing rapidly, but our understanding of their sequence-encoded biological function and dysfunction lags behind. Moreover, unlike equilibrium phases of nonliving matter, living cells are far from equilibrium, with intracellular condensates subject to various posttranslational regulation and other adenosine triphosphate–dependent biological activity. Efforts using in vitro reconstitution, combined with traditional cell biology approaches and quantitative biophysical tools, are required to elucidate how such nonequilibrium features of living cells control intracellular phase behavior. The functional consequences of forming liquid condensates are likely multifaceted and may include facilitated reaction, sequestration of specific factors, and organization of associated intracellular structures. Liquid phase condensation is particularly interesting in the nucleus, given the growing interest in the impact of nuclear phase behavior on the flow of genetic information; nuclear condensates range from micrometer-sized bodies such as the nucleolus to submicrometer structures such as transcriptional assemblies, all of which directly interact with and regulate the genome. Deepening our understanding of these intracellular states of matter not only will shed light on the basic biology of cellular organization but also may enable therapeutic intervention in protein aggregation disease by targeting intracellular phase behavior.

2,432 citations

Journal ArticleDOI
24 Sep 2015-Cell
TL;DR: It is demonstrated that the disease-related RBP hnRNPA1 undergoes liquid-liquid phase separation (LLPS) into protein-rich droplets mediated by a low complexity sequence domain (LCD), and suggested that LCD-mediated LLPS contributes to the assembly of stress granules and their liquid properties.

1,947 citations

Journal ArticleDOI
27 Jul 2018-Science
TL;DR: It is postulated that super-enhancers are phase-separated multimolecular assemblies, also known as biomolecular condensates, which provide a means to compartmentalize and concentrate biochemical reactions within cells.
Abstract: Super-enhancers (SEs) are clusters of enhancers that cooperatively assemble a high density of transcriptional apparatus to drive robust expression of genes with prominent roles in cell identity. Here, we demonstrate that the SE-enriched transcriptional coactivators BRD4 and MED1 form nuclear puncta at SEs that exhibit properties of liquid-like condensates and are disrupted by chemicals that perturb condensates. The intrinsically disordered regions (IDRs) of BRD4 and MED1 can form phase-separated droplets and MED1-IDR droplets can compartmentalize and concentrate transcription apparatus from nuclear extracts. These results support the idea that coactivators form phase-separated condensates at SEs that compartmentalize and concentrate the transcription apparatus, suggest a role for coactivator IDRs in this process, and offer insights into mechanisms involved in control of key cell identity genes.

1,506 citations

Journal ArticleDOI
24 Jan 2019-Cell
TL;DR: In this article, the authors propose guidelines for rigorous experimental characterization of liquid-liquid phase separation processes in vitro and in cells, discuss the caveats of common experimental approaches, and point out experimental and theoretical gaps in the field.

1,482 citations