scispace - formally typeset
Search or ask a question
Author

Timothy J. Tschaplinski

Bio: Timothy J. Tschaplinski is an academic researcher from Oak Ridge National Laboratory. The author has contributed to research in topics: Lignin & Clostridium thermocellum. The author has an hindex of 54, co-authored 203 publications receiving 16437 citations. Previous affiliations of Timothy J. Tschaplinski include University of Chicago & University of Toronto.


Papers
More filters
Journal ArticleDOI
27 Jan 2006-Science
TL;DR: The integration of agroenergy crops and biorefinery manufacturing technologies offers the potential for the development of sustainable biopower and biomaterials that will lead to a new manufacturing paradigm.
Abstract: Biomass represents an abundant carbon-neutral renewable resource for the production of bioenergy and biomaterials, and its enhanced use would address several societal needs. Advances in genetics, biotechnology, process chemistry, and engineering are leading to a new manufacturing concept for converting renewable biomass to valuable fuels and products, generally referred to as the biorefinery. The integration of agroenergy crops and biorefinery manufacturing technologies offers the potential for the development of sustainable biopower and biomaterials that will lead to a new manufacturing paradigm.

5,344 citations

Journal ArticleDOI
16 May 2014-Science
TL;DR: Recent developments in genetic engineering, enhanced extraction methods, and a deeper understanding of the structure of lignin are yielding promising opportunities for efficient conversion of this renewable resource to carbon fibers, polymers, commodity chemicals, and fuels.
Abstract: Background Lignin, nature’s dominant aromatic polymer, is found in most terrestrial plants in the approximate range of 15 to 40% dry weight and provides structural integrity. Traditionally, most large-scale industrial processes that use plant polysaccharides have burned lignin to generate the power needed to productively transform biomass. The advent of biorefineries that convert cellulosic biomass into liquid transportation fuels will generate substantially more lignin than necessary to power the operation, and therefore efforts are underway to transform it to value-added products. Production of biofuels from cellulosic biomass requires separation of large quantities of the aromatic polymer lignin. In planta genetic engineering, enhanced extraction methods, and a deeper understanding of the structure of lignin are yielding promising opportunities for efficient conversion of this renewable resource to carbon fibers, polymers, commodity chemicals, and fuels. [Credit: Oak Ridge National Laboratory, U.S. Department of Energy] Advances Bioengineering to modify lignin structure and/or incorporate atypical components has shown promise toward facilitating recovery and chemical transformation of lignin under biorefinery conditions. The flexibility in lignin monomer composition has proven useful for enhancing extraction efficiency. Both the mining of genetic variants in native populations of bioenergy crops and direct genetic manipulation of biosynthesis pathways have produced lignin feedstocks with unique properties for coproduct development. Advances in analytical chemistry and computational modeling detail the structure of the modified lignin and direct bioengineering strategies for targeted properties. Refinement of biomass pretreatment technologies has further facilitated lignin recovery and enables catalytic modifications for desired chemical and physical properties. Outlook Potential high-value products from isolated lignin include low-cost carbon fiber, engineering plastics and thermoplastic elastomers, polymeric foams and membranes, and a variety of fuels and chemicals all currently sourced from petroleum. These lignin coproducts must be low cost and perform as well as petroleum-derived counterparts. Each product stream has its own distinct challenges. Development of renewable lignin-based polymers requires improved processing technologies coupled to tailored bioenergy crops incorporating lignin with the desired chemical and physical properties. For fuels and chemicals, multiple strategies have emerged for lignin depolymerization and upgrading, including thermochemical treatments and homogeneous and heterogeneous catalysis. The multifunctional nature of lignin has historically yielded multiple product streams, which require extensive separation and purification procedures, but engineering plant feedstocks for greater structural homogeneity and tailored functionality reduces this challenge.

2,958 citations

Journal ArticleDOI
03 Apr 2009-Science
TL;DR: Mutation of the AZELAIC ACID INDUCED 1 (AZI1) gene results in the specific loss of systemic immunity triggered by pathogen or azelaic acid and of the priming of SA induction in plants.
Abstract: Plants possess inducible systemic defense responses when locally infected by pathogens. Bacterial infection results in the increased accumulation of the mobile metabolite azelaic acid, a nine-carbon dicarboxylic acid, in the vascular sap of Arabidopsis that confers local and systemic resistance against the pathogen Pseudomonas syringae. Azelaic acid primes plants to accumulate salicylic acid (SA), a known defense signal, upon infection. Mutation of the AZELAIC ACID INDUCED 1 (AZI1) gene, which is induced by azelaic acid, results in the specific loss of systemic immunity triggered by pathogen or azelaic acid and of the priming of SA induction in plants. Furthermore, the predicted secreted protein AZI1 is also important for generating vascular sap that confers disease resistance. Thus, azelaic acid and AZI1 are components of plant systemic immunity involved in priming defenses.

740 citations

Journal ArticleDOI
Alexander Andrew Myburg1, Dario Grattapaglia2, Dario Grattapaglia3, Gerald A. Tuskan4, Gerald A. Tuskan5, Uffe Hellsten5, Richard D. Hayes5, Jane Grimwood6, Jerry Jenkins6, Erika Lindquist5, Hope Tice5, Diane Bauer5, David Goodstein5, Inna Dubchak5, Alexandre Poliakov5, Eshchar Mizrachi1, Anand Raj Kumar Kullan1, Steven G. Hussey1, Desre Pinard1, Karen Van der Merwe1, Pooja Singh1, Ida Van Jaarsveld1, Orzenil B. Silva-Junior3, Roberto C. Togawa3, Marília de Castro Rodrigues Pappas3, Danielle A. Faria3, Carolina Sansaloni3, Cesar Petroli3, Xiaohan Yang4, Priya Ranjan4, Timothy J. Tschaplinski4, Chu-Yu Ye4, Ting Li4, Lieven Sterck7, Kevin Vanneste7, Florent Murat8, Marçal Soler9, Hélène San Clemente9, Naijib Saidi9, Hua Cassan-Wang9, Christophe Dunand9, Charles A. Hefer1, Charles A. Hefer10, Erich Bornberg-Bauer11, Anna R. Kersting12, Anna R. Kersting11, Kelly J. Vining13, Vindhya Amarasinghe13, Martin Ranik13, Sushma Naithani13, Justin Elser13, Alexander Boyd13, Aaron Liston13, Joseph W. Spatafora13, Palitha Dharmwardhana13, Rajani Raja13, Christopher M. Sullivan13, Elisson Romanel14, Elisson Romanel15, Marcio Alves-Ferreira15, Carsten Külheim16, William J. Foley16, Victor Carocha, Jorge A. P. Paiva17, David Kudrna18, Sérgio Hermínio Brommonschenkel19, Giancarlo Pasquali20, Margaret Byrne, Philippe Rigault, Josquin Tibbits21, Antanas V. Spokevicius22, Rebecca C. Jones23, Dorothy A. Steane23, Dorothy A. Steane24, René E. Vaillancourt23, Brad M. Potts23, Fourie Joubert1, Kerrie Barry5, Georgios J. Pappas25, Steven H. Strauss13, Pankaj Jaiswal13, Jacqueline Grima-Pettenati9, Jérôme Salse8, Yves Van de Peer1, Yves Van de Peer7, Daniel S. Rokhsar5, Jeremy Schmutz6, Jeremy Schmutz5 
19 Jun 2014-Nature
TL;DR: Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes, which shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils.
Abstract: Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.

679 citations

Journal ArticleDOI
TL;DR: It is suggested that the hydraulic principles that govern water transport provide an integrating framework that would allow CO2-induced changes in stomatal conductance, leaf water potential, root growth and other processes to be uniquely evaluated within the context of whole-plant hydraulic conductance and water transport efficiency.
Abstract: Long-term exposure of plants to elevated [CO 2 ] leads to a number of growth and physiological effects, many of which are interpreted in the context of ameliorating the negative impacts of drought. However, despite considerable study, a clear picture in terms of the influence of elevated [CO 2 ] on plant water relations and the role that these effects play in determining the response of plants to elevated [CO 2 ] under water-limited conditions has been slow to emerge. In this paper, four areas of research are examined that represent critical, yet uncertain, themes related to the response of plants to elevated [CO 2 ] and drought. These include (1) fine-root proliferation and implications for whole-plant water uptake; (2) enhanced water-use efficiency and consequences for drought tolerance; (3) reductions in stomatal conductance and impacts on leaf water potential; and (4) solute accumulation, osmotic adjustment and dehydration tolerance of leaves. A survey of the literature indicates that the growth of plants at elevated [CO 2 ] can lead to conditions whereby plants maintain higher (less negative) leaf water potentials. The mechanisms that contribute to this effect are not fully known, although CO 2 -induced reductions in stomatal conductance, increases in whole-plant hydraulic conductance and osmotic adjustment may be important. Less understood are the interactive effects of elevated [CO 2 ] and drought on fine-root production and water-use efficiency, and the contribution of these processes to plant growth in water-limited environments. Increases in water-use efficiency and reductions in water use can contribute to enhanced soil water content under elevated [CO 2 ]. Herbaceous crops and grasslands are most responsive in this regard. The conservation of soil water at elevated [CO 2 ] in other systems has been less studied, but in terms of maintaining growth or carbon gain during drought, the benefits of CO 2 -induced improvements in soil water content appear relatively minor. Nonetheless, because even small effects of elevated [CO 2 ] on plant and soil water relations can have important implications for ecosystems, we conclude that this area of research deserves continued investigation. Future studies that focus on cellular mechanisms of plant response to elevated [CO 2 ] and drought are needed, as are whole-plant investigations that emphasize the integration of processes throughout the soil‐plant‐ atmosphere continuum. We suggest that the hydraulic principles that govern water transport provide an integrating framework that would allow CO 2 -induced changes in stomatal conductance, leaf water potential, root growth and other processes to be uniquely evaluated within the context of whole-plant hydraulic conductance and water transport efficiency.

389 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481 4.2.1.
Abstract: 3.2.3. Hydroformylation 2467 3.2.4. Dimerization 2468 3.2.5. Oxidative Cleavage and Ozonolysis 2469 3.2.6. Metathesis 2470 4. Terpenes 2472 4.1. Pinene 2472 4.1.1. Isomerization: R-Pinene 2472 4.1.2. Epoxidation of R-Pinene 2475 4.1.3. Isomerization of R-Pinene Oxide 2477 4.1.4. Hydration of R-Pinene: R-Terpineol 2478 4.1.5. Dehydroisomerization 2479 4.2. Limonene 2480 4.2.1. Isomerization 2480 4.2.2. Epoxidation: Limonene Oxide 2480 4.2.3. Isomerization of Limonene Oxide 2481 4.2.4. Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481

5,127 citations

Journal ArticleDOI
Gerald A. Tuskan1, Gerald A. Tuskan2, Stephen P. DiFazio2, Stephen P. DiFazio3, Stefan Jansson4, Joerg Bohlmann5, Igor V. Grigoriev6, Uffe Hellsten6, Nicholas H. Putnam6, Steven G. Ralph5, Stephane Rombauts7, Asaf Salamov6, Jacquie Schein, Lieven Sterck7, Andrea Aerts6, Rishikeshi Bhalerao4, Rishikesh P. Bhalerao8, Damien Blaudez9, Wout Boerjan7, Annick Brun9, Amy M. Brunner10, Victor Busov11, Malcolm M. Campbell12, John E. Carlson13, Michel Chalot9, Jarrod Chapman6, G.-L. Chen2, Dawn Cooper5, Pedro M. Coutinho14, Jérémy Couturier9, Sarah F. Covert15, Quentin C. B. Cronk5, R. Cunningham2, John M. Davis16, Sven Degroeve7, Annabelle Déjardin9, Claude W. dePamphilis13, John C. Detter6, Bill Dirks17, Inna Dubchak18, Inna Dubchak6, Sébastien Duplessis9, Jürgen Ehlting5, Brian E. Ellis5, Karla C Gendler19, David Goodstein6, Michael Gribskov20, Jane Grimwood21, Andrew Groover22, Lee E. Gunter2, Björn Hamberger5, Berthold Heinze, Yrjö Helariutta23, Yrjö Helariutta8, Yrjö Helariutta24, Bernard Henrissat14, D. Holligan15, Robert A. Holt, Wenyu Huang6, N. Islam-Faridi22, Steven J.M. Jones, M. Jones-Rhoades25, Richard A. Jorgensen19, Chandrashekhar P. Joshi11, Jaakko Kangasjärvi23, Jan Karlsson4, Colin T. Kelleher5, Robert Kirkpatrick, Matias Kirst16, Annegret Kohler9, Udaya C. Kalluri2, Frank W. Larimer2, Jim Leebens-Mack15, Jean-Charles Leplé9, Philip F. LoCascio2, Y. Lou6, Susan Lucas6, Francis Martin9, Barbara Montanini9, Carolyn A. Napoli19, David R. Nelson26, C D Nelson22, Kaisa Nieminen23, Ove Nilsson8, V. Pereda9, Gary F. Peter16, Ryan N. Philippe5, Gilles Pilate9, Alexander Poliakov18, J. Razumovskaya2, Paul G. Richardson6, Cécile Rinaldi9, Kermit Ritland5, Pierre Rouzé7, D. Ryaboy18, Jeremy Schmutz21, J. Schrader27, Bo Segerman4, H. Shin, Asim Siddiqui, Fredrik Sterky, Astrid Terry6, Chung-Jui Tsai11, Edward C. Uberbacher2, Per Unneberg, Jorma Vahala23, Kerr Wall13, Susan R. Wessler15, Guojun Yang15, T. Yin2, Carl J. Douglas5, Marco A. Marra, Göran Sandberg8, Y. Van de Peer7, Daniel S. Rokhsar6, Daniel S. Rokhsar17 
15 Sep 2006-Science
TL;DR: The draft genome of the black cottonwood tree, Populus trichocarpa, has been reported in this paper, with more than 45,000 putative protein-coding genes identified.
Abstract: We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.

4,025 citations

Journal ArticleDOI
TL;DR: The results from this review may provide the most plausible estimates of how plants in their native environments and field-grown crops will respond to rising atmospheric [CO(2)]; but even with FACE there are limitations, which are discussed.
Abstract: Contents Summary 1 I. What is FACE? 2 II. Materials and methods 2 III. Photosynthetic carbon uptake 3 IV. Acclimation of photosynthesis 6 V. Growth, above-ground production and yield 8 VI. So, what have we learned? 10 Acknowledgements 11 References 11 Appendix 1. References included in the database for meta-analyses 14 Appendix 2. Results of the meta-analysis of FACE effects 18 Summary Free-air CO2 enrichment (FACE) experiments allow study of the effects of elevated [CO2] on plants and ecosystems grown under natural conditions without enclosure. Data from 120 primary, peer-reviewed articles describing physiology and production in the 12 large-scale FACE experiments (475–600 ppm) were collected and summarized using meta-analytic techniques. The results confirm some results from previous chamber experiments: light-saturated carbon uptake, diurnal C assimilation, growth and above-ground production increased, while specific leaf area and stomatal conductance decreased in elevated [CO2]. There were differences in FACE. Trees were more responsive than herbaceous species to elevated [CO2]. Grain crop yields increased far less than anticipated from prior enclosure studies. The broad direction of change in photosynthesis and production in elevated [CO2] may be similar in FACE and enclosure studies, but there are major quantitative differences: trees were more responsive than other functional types; C4 species showed little response; and the reduction in plant nitrogen was small and largely accounted for by decreased Rubisco. The results from this review may provide the most plausible estimates of how plants in their native environments and field-grown crops will respond to rising atmospheric [CO2]; but even with FACE there are limitations, which are also discussed.

3,140 citations

Journal ArticleDOI
16 May 2014-Science
TL;DR: Recent developments in genetic engineering, enhanced extraction methods, and a deeper understanding of the structure of lignin are yielding promising opportunities for efficient conversion of this renewable resource to carbon fibers, polymers, commodity chemicals, and fuels.
Abstract: Background Lignin, nature’s dominant aromatic polymer, is found in most terrestrial plants in the approximate range of 15 to 40% dry weight and provides structural integrity. Traditionally, most large-scale industrial processes that use plant polysaccharides have burned lignin to generate the power needed to productively transform biomass. The advent of biorefineries that convert cellulosic biomass into liquid transportation fuels will generate substantially more lignin than necessary to power the operation, and therefore efforts are underway to transform it to value-added products. Production of biofuels from cellulosic biomass requires separation of large quantities of the aromatic polymer lignin. In planta genetic engineering, enhanced extraction methods, and a deeper understanding of the structure of lignin are yielding promising opportunities for efficient conversion of this renewable resource to carbon fibers, polymers, commodity chemicals, and fuels. [Credit: Oak Ridge National Laboratory, U.S. Department of Energy] Advances Bioengineering to modify lignin structure and/or incorporate atypical components has shown promise toward facilitating recovery and chemical transformation of lignin under biorefinery conditions. The flexibility in lignin monomer composition has proven useful for enhancing extraction efficiency. Both the mining of genetic variants in native populations of bioenergy crops and direct genetic manipulation of biosynthesis pathways have produced lignin feedstocks with unique properties for coproduct development. Advances in analytical chemistry and computational modeling detail the structure of the modified lignin and direct bioengineering strategies for targeted properties. Refinement of biomass pretreatment technologies has further facilitated lignin recovery and enables catalytic modifications for desired chemical and physical properties. Outlook Potential high-value products from isolated lignin include low-cost carbon fiber, engineering plastics and thermoplastic elastomers, polymeric foams and membranes, and a variety of fuels and chemicals all currently sourced from petroleum. These lignin coproducts must be low cost and perform as well as petroleum-derived counterparts. Each product stream has its own distinct challenges. Development of renewable lignin-based polymers requires improved processing technologies coupled to tailored bioenergy crops incorporating lignin with the desired chemical and physical properties. For fuels and chemicals, multiple strategies have emerged for lignin depolymerization and upgrading, including thermochemical treatments and homogeneous and heterogeneous catalysis. The multifunctional nature of lignin has historically yielded multiple product streams, which require extensive separation and purification procedures, but engineering plant feedstocks for greater structural homogeneity and tailored functionality reduces this challenge.

2,958 citations