scispace - formally typeset
Search or ask a question
Author

Timothy J. Yeatman

Bio: Timothy J. Yeatman is an academic researcher. The author has contributed to research in topics: Proto-oncogene tyrosine-protein kinase Src & Cytotoxicity. The author has an hindex of 2, co-authored 2 publications receiving 1065 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A key role of c-SRC in cancer seems to be to promote invasion and motility, functions that might contribute to tumour progression.
Abstract: The c-SRC non-receptor tyrosine kinase is overexpressed and activated in a large number of human malignancies and has been linked to the development of cancer and progression to distant metastases. These observations have led to the recent targeting of c-SRC for the development of anticancer therapeutics, which show promise as a new avenue for cancer treatment. Despite this, however, the precise functions of c-SRC in cancer remain unclear. In addition to increasing cell proliferation, a key role of c-SRC in cancer seems to be to promote invasion and motility, functions that might contribute to tumour progression.

1,130 citations

Journal ArticleDOI
18 Jul 1980-Science
TL;DR: Antibody-dependent cell-mediated cytotoxicity can be measured with as few as 1000 leukocytes with an automated flow cytometry technique.
Abstract: Antibody-dependent cell-mediated cytotoxicity can be measured with as few as 1000 leukocytes with an automated flow cytometry technique.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Increasing evidence suggests that EMT plays a specific role in the migration of cells from a primary tumor into the circulation and may provide a rationale for developing more effective cancer therapies.

1,747 citations

Journal ArticleDOI
TL;DR: Recent advances in understanding in the mechanisms of receptor activation and function, discovery of primary and secondary EGFR somatic mutations, as well as a new generation of anti-EGFR agents provide new leads on the clinical targeting of this receptor.
Abstract: The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase receptor that is frequently expressed in epithelial tumors. The EGFR was the first receptor to be proposed as a target for cancer therapy, and after 2 decades of intensive research, there are several anti-EGFR agents available in the clinic. Recent advances in our understanding in the mechanisms of receptor activation and function, discovery of primary and secondary EGFR somatic mutations, as well as a new generation of anti-EGFR agents provide new leads on the clinical targeting of this receptor and may serve as a model for strategies aimed at targeting other receptors.

713 citations

Journal ArticleDOI
TL;DR: Comment on new insights on the interactions of LIR-containing proteins with members of the ATG8 protein family on the interaction of autophagy receptors to LC3-interacting region proteins anchored in the phagophore membrane.
Abstract: (Macro)autophagy is a fundamental degradation process for macromolecules and organelles of vital importance for cell and tissue homeostasis. Autophagy research has gained a strong momentum in recent years because of its relevance to cancer, neurodegenerative diseases, muscular dystrophy, lipid storage disorders, development, ageing and innate immunity. Autophagy has traditionally been thought of as a bulk degradation process that is mobilized upon nutritional starvation to replenish the cell with building blocks and keep up with the energy demand. This view has recently changed dramatically following an array of papers describing various forms of selective autophagy. A main driving force has been the discovery of specific autophagy receptors that sequester cargo into forming autophagosomes (phagophores). At the heart of this selectivity lies the LC3-interacting region (LIR) motif, which ensures the targeting of autophagy receptors to LC3 (or other ATG8 family proteins) anchored in the phagophore membrane. LIR-containing proteins include cargo receptors, members of the basal autophagy apparatus, proteins associated with vesicles and of their transport, Rab GTPase-activating proteins (GAPs) and specific signaling proteins that are degraded by selective autophagy. Here, we comment on these new insights and focus on the interactions of LIR-containing proteins with members of the ATG8 protein family.

690 citations

Journal ArticleDOI
TL;DR: Multiple potential targets are present at the BTB for innovative contraceptive development and for better delivery of drugs to alleviate toxicant-induced reproductive dysfunction in men, as well as critically evaluate findings in the field regarding studies on drug transporters in the testis.
Abstract: The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. It divides the seminiferous epithelium into the basal and the apical (adluminal) compartments. Meiosis I and II, spermiogenesis, and spermiation all take place in a specialized microenvironment behind the BTB in the apical compartment, but spermatogonial renewal and differentiation and cell cycle progression up to the preleptotene spermatocyte stage take place outside of the BTB in the basal compartment of the epithelium. However, the BTB is not a static ultrastructure. Instead, it undergoes extensive restructuring during the seminiferous epithelial cycle of spermatogenesis at stage VIII to allow the transit of preleptotene spermatocytes at the BTB. Yet the immunological barrier conferred by the BTB cannot be compromised, even transiently, during the epithelial cycle to avoid the production of antibodies against meiotic and postmeiotic germ cells. Studies have demonstrated that some unlikely partners, namely adhesion protein complexes (e.g., occludin-ZO-1, N-cadherin-β-catenin, claudin-5-ZO-1), steroids (e.g., testosterone, estradiol-17β), nonreceptor protein kinases (e.g., focal adhesion kinase, c-Src, c-Yes), polarity proteins (e.g., PAR6, Cdc42, 14-3-3), endocytic vesicle proteins (e.g., clathrin, caveolin, dynamin 2), and actin regulatory proteins (e.g., Eps8, Arp2/3 complex), are working together, apparently under the overall influence of cytokines (e.g., transforming growth factor-β3, tumor necrosis factor-α, interleukin-1α). In short, a “new” BTB is created behind spermatocytes in transit while the “old” BTB above transiting cells undergoes timely degeneration, so that the immunological barrier can be maintained while spermatocytes are traversing the BTB. We also discuss recent findings regarding the molecular mechanisms by which environmental toxicants (e.g., cadmium, bisphenol A) induce testicular injury via their initial actions at the BTB to elicit subsequent damage to germ-cell adhesion, thereby leading to germ-cell loss, reduced sperm count, and male infertility or subfertility. Moreover, we also critically evaluate findings in the field regarding studies on drug transporters in the testis and discuss how these influx and efflux pumps regulate the entry of potential nonhormonal male contraceptives to the apical compartment to exert their effects. Collectively, these findings illustrate multiple potential targets are present at the BTB for innovative contraceptive development and for better delivery of drugs to alleviate toxicant-induced reproductive dysfunction in men.

651 citations

Journal ArticleDOI
TL;DR: Small-molecule SFK inhibitors have been developed and are undergoing early phase clinical testing and seem to be safe in humans and could add to the therapeutic arsenal against subsets of cancers.
Abstract: Src family kinases (SFKs) have a critical role in cell adhesion, invasion, proliferation, survival, and angiogenesis during tumor development. SFKs comprise nine family members that share similar structure and function. Overexpression or high activation of SFKs occurs frequently in tumor tissues and they are central mediators in multiple signaling pathways that are important in oncogenesis. SFKs can interact with tyrosine kinase receptors, such as EGFR and the VEGF receptor. SFKs can affect cell proliferation via the Ras/ERK/MAPK pathway and can regulate gene expression via transcription factors such as STAT molecules. SFKs can also affect cell adhesion and migration via interaction with integrins, actins, GTPase-activating proteins, scaffold proteins, such as p130(CAS) and paxillin, and kinases such as focal adhesion kinases. Furthermore, SFKs can regulate angiogenesis via gene expression of angiogenic growth factors, such as fibroblast growth factor, VEGF, and interleukin 8. On the basis of these important findings, small-molecule SFK inhibitors have been developed and are undergoing early phase clinical testing. In preclinical studies these agents can suppress tumor growth and metastases. The agents seem to be safe in humans and could add to the therapeutic arsenal against subsets of cancers.

642 citations