scispace - formally typeset
Search or ask a question
Author

Timothy S. Collett

Bio: Timothy S. Collett is an academic researcher from United States Geological Survey. The author has contributed to research in topics: Clathrate hydrate & Natural gas. The author has an hindex of 56, co-authored 245 publications receiving 13543 citations. Previous affiliations of Timothy S. Collett include West Virginia University & Denver Federal Center.


Papers
More filters
Journal ArticleDOI
TL;DR: A series of recent field expeditions have provided new insights into the nature of gas hydrate occurrence; perhaps most notably, the understanding that gas hydrates occur in a wide variety of geologic settings and modes of occurrence.
Abstract: For the past three decades, discussion of naturally-occurring gas hydrates has been framed by a series of assessments that indicate enormous global volumes of methane present within gas hydrate accumulations. At present, these estimates continue to range over several orders of magnitude, creating great uncertainty in assessing those two gas hydrate issues that relate most directly to resource volumes – gas hydrate’s potential as an energy resource and its possible role in ongoing climate change. However, a series of recent field expeditions have provided new insights into the nature of gas hydrate occurrence; perhaps most notably, the understanding that gas hydrates occur in a wide variety of geologic settings and modes of occurrence. These fundamental differences - which include gas hydrate concentration, host lithology, distribution within the sediment matrix, burial depth, water depth, and many others - can now be incorporated into evaluations of gas hydrate energy resource and environmental issues. With regard to energy supply potential, field data combined with advanced numerical simulation have identified gas-hydrate-bearing sands as the most feasible initial targets for energy recovery. The first assessments of potential technically-recoverable resources are now occurring, enabling a preliminary estimate of ultimate global recoverable volumes on the order of ~3 × 1014 m3 (1016 ft3; ∼150 GtC). Other occurrences, such as gas hydrate-filled fractures in clay-dominated reservoirs, may also become potential energy production targets in the future; but as yet, no production concept has been demonstrated. With regard to the climate implications of gas hydrate, an analogous partitioning of global resources to determine that portion most prone to dissociation during specific future warming scenarios is needed. At present, it appears that these two portions of total gas hydrate resources (those that are the most likely targets for gas extraction and those that are the most likely to respond in a meaningful way to climate change) will be largely exclusive, as those deposits that are the most amenable to production (the more deeply buried and localized accumulations) are also those that are the most poorly coupled to oceanic and atmospheric conditions.

1,060 citations

Journal ArticleDOI
TL;DR: In this article, a first-principle-based effective medium model for elastic-wave velocity in unconsolidated, high porosity, ocean bottom sediments containing gas hydrate was proposed.
Abstract: We offer a first-principle-based effective medium model for elastic-wave velocity in unconsolidated, high porosity, ocean bottom sediments containing gas hydrate. The dry sediment frame elastic constants depend on porosity, elastic moduli of the solid phase, and effective pressure. Elastic moduli of saturated sediment are calculated from those of the dry frame using Gassmann's equation. To model the effect of gas hydrate on sediment elastic moduli we use two separate assumptions: (a) hydrate modifies the pore fluid elastic properties without affecting the frame; (b) hydrate becomes a component of the solid phase, modifying the elasticity of the frame. The goal of the modeling is to predict the amount of hydrate in sediments from sonic or seismic velocity data. We apply the model to sonic and VSP data from ODP Hole 995 and obtain hydrate concentration estimates from assumption (b) consistent with estimates obtained from resistivity, chlorinity and evolved gas data.

563 citations

Journal ArticleDOI
TL;DR: In this paper, the combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m.
Abstract: The discovery of large gas hydrate accumulations in terrestrial per mafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved be fore gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

543 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the distribution of natural gas hydrate accumulations, the status of the primary international RD Klauda and Sandler, 2005), reservoir lithology, and rates and their production potential.
Abstract: Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential George J. Moridis, SPE, Lawrence Berkeley National Laboratory; Timothy S. Collett, SPE, US Geological Survey; Ray Boswell, US Department of Energy; M. Kurihara, SPE, Japan Oil Engineering Company; Matthew T. Reagan, SPE, Lawrence Berkeley National Laboratory; Carolyn Koh and E. Dendy Sloan, SPE, Colorado School of Mines This paper was prepared for presentation at the 2008 SPE Unconventional Reservoirs Conference held in Keystone, Colorado, U.S.A., 10–12 February 2008. Abstract Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international RD Klauda and Sandler, 2005). Given the sheer magnitude of the resource, ever increasing global energy demand, and the finite volume of conventional fossil fuel reserves, gas hydrates are emerging as a potential energy source for a growing number of nations. The attractive- ness of gas hydrates is further enhanced by the environmental desirability of natural gas (as opposed to solid or liquid) fuels. Thus, the appeal of gas hydrate accumulations as future hydrocarbon gas sources is rapidly increasing and their production potential clearly demands technical and economic evaluation. The past decade has seen a marked acceleration in gas hydrate RD Paull et al., 2005), reservoir lithology, and rates and

363 citations


Cited by
More filters
Journal ArticleDOI
20 Nov 2003-Nature
TL;DR: Natural gas hydrates have an important bearing on flow assurance and safety issues in oil and gas pipelines, they offer a largely unexploited means of energy recovery and transportation, and could play a significant role in past and future climate change.
Abstract: Natural gas hydrates are solid, non-stoichiometric compounds of small gas molecules and water. They form when the constituents come into contact at low temperature and high pressure. The physical properties of these compounds, most notably that they are non-flowing crystalline solids that are denser than typical fluid hydrocarbons and that the gas molecules they contain are effectively compressed, give rise to numerous applications in the broad areas of energy and climate effects. In particular, they have an important bearing on flow assurance and safety issues in oil and gas pipelines, they offer a largely unexploited means of energy recovery and transportation, and they could play a significant role in past and future climate change.

2,419 citations

Journal ArticleDOI
TL;DR: A theory to explain when people are likely to anthropomorphize and when they are not is described, focused on three psychological determinants--the accessibility and applicability of anthropocentric knowledge, the motivation to explain and understand the behavior of other agents, and the desire for social contact and affiliation.
Abstract: Anthropomorphism describes the tendency to imbue the real or imagined behavior of nonhuman agents with humanlike characteristics, motivations, intentions, or emotions. Although surprisingly common, anthropomorphism is not invariant. This article describes a theory to explain when people are likely to anthropomorphize and when they are not, focused on three psychological determinants--the accessibility and applicability of anthropocentric knowledge (elicited agent knowledge), the motivation to explain and understand the behavior of other agents (effectance motivation), and the desire for social contact and affiliation (sociality motivation). This theory predicts that people are more likely to anthropomorphize when anthropocentric knowledge is accessible and applicable, when motivated to be effective social agents, and when lacking a sense of social connection to other humans. These factors help to explain why anthropomorphism is so variable; organize diverse research; and offer testable predictions about dispositional, situational, developmental, and cultural influences on anthropomorphism. Discussion addresses extensions of this theory into the specific psychological processes underlying anthropomorphism, applications of this theory into robotics and human-computer interaction, and the insights offered by this theory into the inverse process of dehumanization.

1,960 citations

Journal ArticleDOI
TL;DR: A theoretical framework and meta-analysis of 46 studies in natural settings involving 12,883 employees found that telecommuting had small but mainly beneficial effects on proximal outcomes, such as perceived autonomy and (lower) work-family conflict.
Abstract: What are the positive and negative consequences of telecommuting? How do these consequences come about? When are these consequences more or less potent? The authors answer these questions through construction of a theoretical framework and meta-analysis of 46 studies in natural settings involving 12,883 employees. Telecommuting had small but mainly beneficial effects on proximal outcomes, such as perceived autonomy and (lower) work–family conflict. Importantly, telecommuting had no generally detrimental effects on the quality of workplace relationships. Telecommuting also had beneficial effects on more distal outcomes, such as job satisfaction, performance, turnover intent, and role stress. These beneficial consequences appeared to be at least partially mediated by perceived autonomy. Also, high-intensity telecommuting (more than 2.5 days a week) accentuated telecommuting’s beneficial effects on work–family conflict but harmed relationships with coworkers. Results provide building blocks for a more complete theoretical and practical treatment of telecommuting.

1,473 citations

Journal ArticleDOI
TL;DR: It is concluded that music evokes emotions through mechanisms that are not unique to music, and that the study of musical emotions could benefit the emotion field as a whole by providing novel paradigms for emotion induction.
Abstract: Research indicates that people value music primarily because of the emotions it evokes. Yet, the notion of musical emotions remains controversial, and researchers have so far been unable to offer a satisfactory account of such emotions. We argue that the study of musical emotions has suffered from a neglect of underlying mechanisms. Specifically, researchers have studied musical emotions without regard to how they were evoked, or have assumed that the emotions must be based on the "default" mechanism for emotion induction, a cognitive appraisal. Here, we present a novel theoretical framework featuring six additional mechanisms through which music listening may induce emotions: (1) brain stem reflexes, (2) evaluative conditioning, (3) emotional contagion, (4) visual imagery, (5) episodic memory, and (6) musical expectancy. We propose that these mechanisms differ regarding such characteristics as their information focus, ontogenetic development, key brain regions, cultural impact, induction speed, degree of volitional influence, modularity, and dependence on musical structure. By synthesizing theory and findings from different domains, we are able to provide the first set of hypotheses that can help researchers to distinguish among the mechanisms. We show that failure to control for the underlying mechanism may lead to inconsistent or non-interpretable findings. Thus, we argue that the new framework may guide future research and help to resolve previous disagreements in the field. We conclude that music evokes emotions through mechanisms that are not unique to music, and that the study of musical emotions could benefit the emotion field as a whole by providing novel paradigms for emotion induction.

1,381 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss three important aspects of gas hydrates: their potential as a fossil fuel resource, their role as a submarine geohazard, and their effects on global climate change.
Abstract: Gas hydrates are naturally ocurring solids consisting of water molecules forming a lattice of cages, most of which contain a molecule of natural gas, usually methane. The present article discusses three important aspects of gas hydrates: their potential as a fossil fuel resource, their role as a submarine geohazard, and their effects on global climate change. 70 refs., 16 figs., 1 tab.

1,364 citations