scispace - formally typeset
Search or ask a question
Author

Tingfa Xu

Bio: Tingfa Xu is an academic researcher from Beijing Institute of Technology. The author has contributed to research in topics: Computer science & Artificial intelligence. The author has an hindex of 15, co-authored 104 publications receiving 2009 citations. Previous affiliations of Tingfa Xu include University of California, Merced & Chinese Ministry of Education.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: SAF R-CNN as discussed by the authors introduces multiple built-in subnetworks which detect pedestrians with scales from disjoint ranges, and outputs from all of the sub-networks are then adaptively combined to generate the final detection results that are shown to be robust to large variance in instance scales.
Abstract: In this paper, we consider the problem of pedestrian detection in natural scenes. Intuitively, instances of pedestrians with different spatial scales may exhibit dramatically different features. Thus, large variance in instance scales, which results in undesirable large intracategory variance in features, may severely hurt the performance of modern object instance detection methods. We argue that this issue can be substantially alleviated by the divide-and-conquer philosophy. Taking pedestrian detection as an example, we illustrate how we can leverage this philosophy to develop a Scale-Aware Fast R-CNN (SAF R-CNN) framework. The model introduces multiple built-in subnetworks which detect pedestrians with scales from disjoint ranges. Outputs from all of the subnetworks are then adaptively combined to generate the final detection results that are shown to be robust to large variance in instance scales, via a gate function defined over the sizes of object proposals. Extensive evaluations on several challenging pedestrian detection datasets well demonstrate the effectiveness of the proposed SAF R-CNN. Particularly, our method achieves state-of-the-art performance on Caltech [P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An evaluation of the state of the art,” IEEE Trans. Pattern Anal. Mach. Intell. , vol. 34, no. 4, pp. 743–761, Apr. 2012], and obtains competitive results on INRIA [N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , 2005, pp. 886–893], ETH [A. Ess, B. Leibe, and L. V. Gool, “Depth and appearance for mobile scene analysis,” in Proc. Int. Conf. Comput. Vis ., 2007, pp. 1–8], and KITTI [A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? The KITTI vision benchmark suite,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit ., 2012, pp. 3354–3361].

716 citations

Posted Content
TL;DR: This work addresses the small object detection problem by developing a single architecture that internally lifts representations of small objects to super-resolved ones, achieving similar characteristics as large objects and thus more discriminative for detection.
Abstract: Detecting small objects is notoriously challenging due to their low resolution and noisy representation. Existing object detection pipelines usually detect small objects through learning representations of all the objects at multiple scales. However, the performance gain of such ad hoc architectures is usually limited to pay off the computational cost. In this work, we address the small object detection problem by developing a single architecture that internally lifts representations of small objects to "super-resolved" ones, achieving similar characteristics as large objects and thus more discriminative for detection. For this purpose, we propose a new Perceptual Generative Adversarial Network (Perceptual GAN) model that improves small object detection through narrowing representation difference of small objects from the large ones. Specifically, its generator learns to transfer perceived poor representations of the small objects to super-resolved ones that are similar enough to real large objects to fool a competing discriminator. Meanwhile its discriminator competes with the generator to identify the generated representation and imposes an additional perceptual requirement - generated representations of small objects must be beneficial for detection purpose - on the generator. Extensive evaluations on the challenging Tsinghua-Tencent 100K and the Caltech benchmark well demonstrate the superiority of Perceptual GAN in detecting small objects, including traffic signs and pedestrians, over well-established state-of-the-arts.

448 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: Li et al. as discussed by the authors proposed a new Generative Adversarial Network (GAN) model that improves small object detection through narrowing representation difference of small objects from the large ones.
Abstract: Detecting small objects is notoriously challenging due to their low resolution and noisy representation. Existing object detection pipelines usually detect small objects through learning representations of all the objects at multiple scales. However, the performance gain of such ad hoc architectures is usually limited to pay off the computational cost. In this work, we address the small object detection problem by developing a single architecture that internally lifts representations of small objects to super-resolved ones, achieving similar characteristics as large objects and thus more discriminative for detection. For this purpose, we propose a new Perceptual Generative Adversarial Network (Perceptual GAN) model that improves small object detection through narrowing representation difference of small objects from the large ones. Specifically, its generator learns to transfer perceived poor representations of the small objects to super-resolved ones that are similar enough to real large objects to fool a competing discriminator. Meanwhile its discriminator competes with the generator to identify the generated representation and imposes an additional perceptual requirement - generated representations of small objects must be beneficial for detection purpose - on the generator. Extensive evaluations on the challenging Tsinghua-Tencent 100K [45] and the Caltech [9] benchmark well demonstrate the superiority of Perceptual GAN in detecting small objects, including traffic signs and pedestrians, over well-established state-of-the-arts.

411 citations

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors proposed an attention-to-context convolution neural network (AC-CNN) for object detection, which consists of one attention-based global contextualized subnetwork and one multi-scale local contextualized (MLC) subnetwork.
Abstract: Modern deep neural network-based object detection methods typically classify candidate proposals using their interior features. However, global and local surrounding contexts that are believed to be valuable for object detection are not fully exploited by existing methods yet. In this work, we take a step towards understanding what is a robust practice to extract and utilize contextual information to facilitate object detection in practice. Specifically, we consider the following two questions: “how to identify useful global contextual information for detecting a certain object?” and “how to exploit local context surrounding a proposal for better inferring its contents?” We provide preliminary answers to these questions through developing a novel attention to context convolution neural network (AC-CNN)-based object detection model. AC-CNN effectively incorporates global and local contextual information into the region-based CNN (e.g., fast R-CNN and faster R-CNN) detection framework and provides better object detection performance. It consists of one attention-based global contextualized (AGC) subnetwork and one multi-scale local contextualized (MLC) subnetwork. To capture global context, the AGC subnetwork recurrently generates an attention map for an input image to highlight useful global contextual locations, through multiple stacked long short-term memory layers. For capturing surrounding local context, the MLC subnetwork exploits both the inside and outside contextual information of each specific proposal at multiple scales. The global and local context are then fused together for making the final decision for detection. Extensive experiments on PASCAL VOC 2007 and VOC 2012 well demonstrate the superiority of the proposed AC-CNN over well-established baselines.

229 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: Zhang et al. as mentioned in this paper proposed to incorporate global semantic priors as input and impose local structure losses to regularize the output within a multi-scale deep CNN to restore sharp images with more facial details.
Abstract: In this paper, we present an effective and efficient face deblurring algorithm by exploiting semantic cues via deep convolutional neural networks (CNNs). As face images are highly structured and share several key semantic components (e.g., eyes and mouths), the semantic information of a face provides a strong prior for restoration. As such, we propose to incorporate global semantic priors as input and impose local structure losses to regularize the output within a multi-scale deep CNN. We train the network with perceptual and adversarial losses to generate photo-realistic results and develop an incremental training strategy to handle random blur kernels in the wild. Quantitative and qualitative evaluations demonstrate that the proposed face deblurring algorithm restores sharp images with more facial details and performs favorably against state-of-the-art methods in terms of restoration quality, face recognition and execution speed.

194 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of deep learning-based object detection frameworks is provided, focusing on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further.
Abstract: Due to object detection’s close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles that combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy, and optimization function. In this paper, we provide a review of deep learning-based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely, the convolutional neural network. Then, we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection, and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network-based learning systems.

3,097 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of the recent achievements in this field brought about by deep learning techniques, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics.
Abstract: Object detection, one of the most fundamental and challenging problems in computer vision, seeks to locate object instances from a large number of predefined categories in natural images. Deep learning techniques have emerged as a powerful strategy for learning feature representations directly from data and have led to remarkable breakthroughs in the field of generic object detection. Given this period of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought about by deep learning techniques. More than 300 research contributions are included in this survey, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics. We finish the survey by identifying promising directions for future research.

1,897 citations

Journal ArticleDOI
TL;DR: This work proposes a novel hybrid densely connected UNet (H-DenseUNet), which consists of a 2-D Dense UNet for efficiently extracting intra-slice features and a 3-D counterpart for hierarchically aggregating volumetric contexts under the spirit of the auto-context algorithm for liver and tumor segmentation.
Abstract: Liver cancer is one of the leading causes of cancer death. To assist doctors in hepatocellular carcinoma diagnosis and treatment planning, an accurate and automatic liver and tumor segmentation method is highly demanded in the clinical practice. Recently, fully convolutional neural networks (FCNs), including 2-D and 3-D FCNs, serve as the backbone in many volumetric image segmentation. However, 2-D convolutions cannot fully leverage the spatial information along the third dimension while 3-D convolutions suffer from high computational cost and GPU memory consumption. To address these issues, we propose a novel hybrid densely connected UNet (H-DenseUNet), which consists of a 2-D DenseUNet for efficiently extracting intra-slice features and a 3-D counterpart for hierarchically aggregating volumetric contexts under the spirit of the auto-context algorithm for liver and tumor segmentation. We formulate the learning process of the H-DenseUNet in an end-to-end manner, where the intra-slice representations and inter-slice features can be jointly optimized through a hybrid feature fusion layer. We extensively evaluated our method on the data set of the MICCAI 2017 Liver Tumor Segmentation Challenge and 3DIRCADb data set. Our method outperformed other state-of-the-arts on the segmentation results of tumors and achieved very competitive performance for liver segmentation even with a single model.

1,561 citations

Journal ArticleDOI
TL;DR: A new saliency method is proposed by introducing short connections to the skip-layer structures within the HED architecture, which produces state-of-the-art results on 5 widely tested salient object detection benchmarks, with advantages in terms of efficiency, effectiveness, and simplicity over the existing algorithms.
Abstract: Recent progress on salient object detection is substantial, benefiting mostly from the explosive development of Convolutional Neural Networks (CNNs). Semantic segmentation and salient object detection algorithms developed lately have been mostly based on Fully Convolutional Neural Networks (FCNs). There is still a large room for improvement over the generic FCN models that do not explicitly deal with the scale-space problem. The Holistically-Nested Edge Detector (HED) provides a skip-layer structure with deep supervision for edge and boundary detection, but the performance gain of HED on saliency detection is not obvious. In this paper, we propose a new salient object detection method by introducing short connections to the skip-layer structures within the HED architecture. Our framework takes full advantage of multi-level and multi-scale features extracted from FCNs, providing more advanced representations at each layer, a property that is critically needed to perform segment detection. Our method produces state-of-the-art results on 5 widely tested salient object detection benchmarks, with advantages in terms of efficiency (0.08 seconds per image), effectiveness, and simplicity over the existing algorithms. Beyond that, we conduct an exhaustive analysis of the role of training data on performance. We provide a training set for future research and fair comparisons.

1,041 citations

Journal ArticleDOI
TL;DR: This paper bridges the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas, and provides an encyclopedic review of mobile and Wireless networking research based on deep learning, which is categorize by different domains.
Abstract: The rapid uptake of mobile devices and the rising popularity of mobile applications and services pose unprecedented demands on mobile and wireless networking infrastructure. Upcoming 5G systems are evolving to support exploding mobile traffic volumes, real-time extraction of fine-grained analytics, and agile management of network resources, so as to maximize user experience. Fulfilling these tasks is challenging, as mobile environments are increasingly complex, heterogeneous, and evolving. One potential solution is to resort to advanced machine learning techniques, in order to help manage the rise in data volumes and algorithm-driven applications. The recent success of deep learning underpins new and powerful tools that tackle problems in this space. In this paper, we bridge the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas. We first briefly introduce essential background and state-of-the-art in deep learning techniques with potential applications to networking. We then discuss several techniques and platforms that facilitate the efficient deployment of deep learning onto mobile systems. Subsequently, we provide an encyclopedic review of mobile and wireless networking research based on deep learning, which we categorize by different domains. Drawing from our experience, we discuss how to tailor deep learning to mobile environments. We complete this survey by pinpointing current challenges and open future directions for research.

975 citations