scispace - formally typeset
Search or ask a question
Author

Tinku Rasheed

Bio: Tinku Rasheed is an academic researcher from Orange S.A.. The author has contributed to research in topics: Wireless network & Mobile computing. The author has an hindex of 25, co-authored 102 publications receiving 2582 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The trial phase of the system mounting LTE-A technology onboard Helikites to serve users on the ground yielded very encouraging results, and showed that such a system could offer a longer lasting solution, provided that inefficiency in powering the radio frequency equipment in the Helikite can be overcome.
Abstract: Providing "connectivity from the sky" is the new innovative trend in wireless communications. High and low altitude platforms, drones, aircrafts, and airships are being considered as candidates for deploying wireless communications complementing the terrestrial communication infrastructure. In this article we report the detailed account of the design and implementation challenges of an aerial network consisting of LTE-Advanced (LTE-A) base stations. In particular, we review achievements and innovations harnessed by an aerial network composed of Helikite platforms. Helikites can be raised in the sky to bring Internet access during special events and in the aftermath of an emergency. The trial phase of the system mounting LTE-A technology onboard Helikites to serve users on the ground yielded very encouraging results, and showed that such a system could offer a longer lasting solution, provided that inefficiency in powering the radio frequency equipment in the Helikite can be overcome.

377 citations

Journal ArticleDOI
TL;DR: The improved greedy traffic-aware routing protocol (GyTAR), which is an intersection-based geographical routing protocol that is capable of finding robust and optimal routes within urban environments, is introduced.
Abstract: Vehicular ad hoc networks (VANETs) have received considerable attention in recent times. Multihop data delivery between vehicles is an important aspect for the support of VANET-based applications. Although data dissemination and routing have extensively been addressed, many unique characteristics of VANETs, together with the diversity in promising applications, offer newer research challenges. This paper introduces the improved greedy traffic-aware routing protocol (GyTAR), which is an intersection-based geographical routing protocol that is capable of finding robust and optimal routes within urban environments. The main principle behind GyTAR is the dynamic and in-sequence selection of intersections through which data packets are forwarded to the destinations. The intersections are chosen considering parameters such as the remaining distance to the destination and the variation in vehicular traffic. Data forwarding between intersections in GyTAR adopts an improved greedy carry-and-forward mechanism. Evaluation of the proposed routing protocol shows significant performance improvement in comparison with other existing routing approaches. With the aid of extensive simulations, we also validate the optimality and sensitivity of significant GyTAR parameters.

304 citations

Journal ArticleDOI
TL;DR: The present paper investigates the current technological solutions and regulatory and the technical-economical dimensions in connection with the sharing of mobile telecommunication networks in emerging countries, and assesses the technical constraints, applicability and benefits of the network sharing solutions in an emerging market context.

157 citations

Journal ArticleDOI
TL;DR: This work formalizes the wireless V NF placement problem in the radio access network as an integer linear programming problem and proposes a VNF placement heuristic, named wireless network embedding (WiNE), to solve the problem.
Abstract: Network function virtualization (NFV) sits firmly on the networking evolutionary path. By migrating network functions from dedicated devices to general purpose computing platforms, NFV can help reduce the cost to deploy and operate large IT infrastructures. In particular, NFV is expected to play a pivotal role in mobile networks where significant cost reductions can be obtained by dynamically deploying and scaling virtual network functions (VNFs) in the core network. However, in order to achieve its full potential, NFV needs to extend its reach also to the radio access segment. Here, mobile virtual network operators shall be allowed to request radio access VNFs with custom resource allocation solutions. Such a requirement raises several challenges in terms of performance isolation and resource provisioning. In this work, we formalize the wireless VNF placement problem in the radio access network as an integer linear programming problem and we propose a VNF placement heuristic, named wireless network embedding (WiNE), to solve the problem. Moreover, we present a proof-of-concept implementation of an NFV management and orchestration framework for enterprise WLANs. The proposed architecture builds on a programmable network fabric where pure forwarding nodes are mixed with radio and packet processing capable nodes.

119 citations

Journal ArticleDOI
TL;DR: This work presents a set of programming abstractions modeling the fundamental aspects of a wireless network, namely state management, resource provisioning, network monitoring, and network reconfiguration, and investigates the usefulness, efficiency and flexibility of the platform over a real 802.11-based WLAN.
Abstract: Software-Defined Networking (SDN) has received, in the last years, significant interest from the academic and the industrial communities alike. The decoupled control and data planes found in an SDN allows for logically centralized intelligence in the control plane and generalized network hardware in the data plane. Although the current SDN ecosystem provides a rich support for wired packet--switched networks, the same cannot be said for wireless networks where specific radio data-plane abstractions, controllers, and programming primitives are still yet to be established. In this work, we present a set of programming abstractions modeling the fundamental aspects of a wireless network, namely state management, resource provisioning, network monitoring, and network reconfiguration. The proposed abstractions hide away the implementation details of the underlying wireless technology providing programmers with expressive tools to control the state of the network. We also present a Software-Defined Radio Access Network Controller for Enterprise WLANs and a Python--based Software Development Kit implementing the proposed abstractions. Finally, we experimentally evaluate the usefulness, efficiency and flexibility of the platform over a real 802.11-based WLAN.

117 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations

Journal ArticleDOI
TL;DR: In this article, a new design paradigm that jointly considers both the communication throughput and the UAV's energy consumption was proposed to maximize the energy efficiency of UAV communications with a ground terminal.
Abstract: Wireless communication with unmanned aerial vehicles (UAVs) is a promising technology for future communication systems. In this paper, assuming that the UAV flies horizontally with a fixed altitude, we study energy-efficient UAV communication with a ground terminal via optimizing the UAV’s trajectory, a new design paradigm that jointly considers both the communication throughput and the UAV’s energy consumption. To this end, we first derive a theoretical model on the propulsion energy consumption of fixed-wing UAVs as a function of the UAV’s flying speed, direction, and acceleration. Based on the derived model and by ignoring the radiation and signal processing energy consumption, the energy efficiency of UAV communication is defined as the total information bits communicated normalized by the UAV propulsion energy consumed for a finite time horizon. For the case of unconstrained trajectory optimization, we show that both the rate-maximization and energy-minimization designs lead to vanishing energy efficiency and thus are energy-inefficient in general. Next, we introduce a simple circular UAV trajectory, under which the UAV’s flight radius and speed are jointly optimized to maximize the energy efficiency. Furthermore, an efficient design is proposed for maximizing the UAV’s energy efficiency with general constraints on the trajectory, including its initial/final locations and velocities, as well as minimum/maximum speed and acceleration. Numerical results show that the proposed designs achieve significantly higher energy efficiency for UAV communication as compared with other benchmark schemes.

1,653 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented, and the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated.
Abstract: The use of flying platforms such as unmanned aerial vehicles (UAVs), popularly known as drones, is rapidly growing. In particular, with their inherent attributes such as mobility, flexibility, and adaptive altitude, UAVs admit several key potential applications in wireless systems. On the one hand, UAVs can be used as aerial base stations to enhance coverage, capacity, reliability, and energy efficiency of wireless networks. On the other hand, UAVs can operate as flying mobile terminals within a cellular network. Such cellular-connected UAVs can enable several applications ranging from real-time video streaming to item delivery. In this paper, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented. Moreover, the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated. In particular, the key UAV challenges such as 3D deployment, performance analysis, channel modeling, and energy efficiency are explored along with representative results. Then, open problems and potential research directions pertaining to UAV communications are introduced. Finally, various analytical frameworks and mathematical tools, such as optimization theory, machine learning, stochastic geometry, transport theory, and game theory are described. The use of such tools for addressing unique UAV problems is also presented. In a nutshell, this tutorial provides key guidelines on how to analyze, optimize, and design UAV-based wireless communication systems.

1,395 citations

Journal ArticleDOI
TL;DR: This paper analyzes the MEC reference architecture and main deployment scenarios, which offer multi-tenancy support for application developers, content providers, and third parties, and elaborates further on open research challenges.
Abstract: Multi-access edge computing (MEC) is an emerging ecosystem, which aims at converging telecommunication and IT services, providing a cloud computing platform at the edge of the radio access network MEC offers storage and computational resources at the edge, reducing latency for mobile end users and utilizing more efficiently the mobile backhaul and core networks This paper introduces a survey on MEC and focuses on the fundamental key enabling technologies It elaborates MEC orchestration considering both individual services and a network of MEC platforms supporting mobility, bringing light into the different orchestration deployment options In addition, this paper analyzes the MEC reference architecture and main deployment scenarios, which offer multi-tenancy support for application developers, content providers, and third parties Finally, this paper overviews the current standardization activities and elaborates further on open research challenges

1,351 citations

Journal ArticleDOI
TL;DR: In this article, a tractable analytical framework for the coverage and rate analysis is derived for the deployment of an unmanned aerial vehicle (UAV) as a flying base station used to provide the fly wireless communications to a given geographical area is analyzed.
Abstract: In this paper, the deployment of an unmanned aerial vehicle (UAV) as a flying base station used to provide the fly wireless communications to a given geographical area is analyzed. In particular, the coexistence between the UAV, that is transmitting data in the downlink, and an underlaid device-to-device (D2D) communication network is considered. For this model, a tractable analytical framework for the coverage and rate analysis is derived. Two scenarios are considered: a static UAV and a mobile UAV. In the first scenario, the average coverage probability and the system sum-rate for the users in the area are derived as a function of the UAV altitude and the number of D2D users. In the second scenario, using the disk covering problem, the minimum number of stop points that the UAV needs to visit in order to completely cover the area is computed. Furthermore, considering multiple retransmissions for the UAV and D2D users, the overall outage probability of the D2D users is derived. Simulation and analytical results show that, depending on the density of D2D users, the optimal values for the UAV altitude, which lead to the maximum system sum-rate and coverage probability, exist. Moreover, our results also show that, by enabling the UAV to intelligently move over the target area, the total required transmit power of UAV while covering the entire area, can be minimized. Finally, in order to provide full coverage for the area of interest, the tradeoff between the coverage and delay, in terms of the number of stop points, is discussed.

1,106 citations