scispace - formally typeset
Search or ask a question
Author

Tobias A. F. König

Bio: Tobias A. F. König is an academic researcher from Leibniz Institute for Neurobiology. The author has contributed to research in topics: Plasmon & Surface plasmon. The author has an hindex of 24, co-authored 69 publications receiving 1858 citations. Previous affiliations of Tobias A. F. König include University of Freiburg & Leibniz Association.


Papers
More filters
Journal ArticleDOI
03 Jun 2014-ACS Nano
TL;DR: It is suggested that the combination of anisotropic nanostructures and electrochromic matrix has the potential to reversibly electrically tune plasmonic resonances over the full visible spectrum.
Abstract: We present a plasmon-active hybrid nanomaterial design with electrochemical tunability of the localized surface plasmon resonances. The plasmonic-active nanostructures are composed of silver nanocube aggregates embedded into an electrochromic polymer coating on an indium tin oxide electrode with the nanocube aggregation controlled by the surface pressure. Such polymer–nanocube hybrid nanomaterials demonstrated unique tunable plasmonic behavior under an applied electrochemical potential. A significant reversible experimental peak shift of 22 nm at an electrical potential of 200 mV has been achieved in these measurements. Finite-difference time-domain (FDTD) simulations show that, under full oxidation potential, a maximal spectral shift of ca. 80 nm can be potentially achieved, which corresponds to a high sensitivity of 178 nm per refractive index unit. Furthermore, FDTD modeling suggests that the electrochemically controlled tunability of plasmonic peaks is caused by reversible changes in the refractive in...

337 citations

Journal ArticleDOI
TL;DR: The benefits and drawbacks of this transparent nanomesh electrode are identified, which is of high relevance for future ITO replacement strategies, and ITO-free solar cells reaching ~77% PCE compared to ITO reference devices are fabricated.
Abstract: In this contribution, the optical losses and gains attributed to periodic nanohole array electrodes in polymer solar cells are systematically studied. For this, thin gold nanomeshes with hexagonally ordered holes and periodicities (P) ranging from 202 nm to 2560 nm are prepared by colloidal lithography. In combination with two different active layer materials (P3HT:PC61BM and PTB7:PC71BM), the optical properties are correlated with the power conversion efficiency (PCE) of the solar cells. A cavity mode is identified at the absorption edge of the active layer material. The resonance wavelength of this cavity mode is hardly defined by the nanomesh periodicity but rather by the absorption of the photoactive layer. This constitutes a fundamental dilemma when using nanomeshes as ITO replacement. The highest plasmonic enhancement requires small periodicities. This is accompanied by an overall low transmittance and high parasitic absorption losses. Consequently, larger periodicities with a less efficient cavity mode, yet lower absorptive losses were found to yield the highest PCE. Nevertheless, ITO-free solar cells reaching ~77% PCE compared to ITO reference devices are fabricated. Concomitantly, the benefits and drawbacks of this transparent nanomesh electrode are identified, which is of high relevance for future ITO replacement strategies.

197 citations

Journal ArticleDOI
TL;DR: Beyond elementary simulations on the individual chain level, this work introduces an advanced model, which considers the chain length distribution as well as disorder, and finds evidence for well-defined plasmonic modes of quasi-infinite chains, such as resonance splitting and multiple radiant modes.
Abstract: We present ensembles of surface-ordered nanoparticle arrangements, which are formed by template-assisted self-assembly of monodisperse, protein-coated gold nanoparticles in wrinkle templates. Centimeter-squared areas of highly regular, linear assemblies with tunable line width are fabricated and their extinction cross sections can be characterized by conventional UV/vis/NIR spectroscopy. Modeling based on electrodynamic simulations shows a clear signature of strong plasmonic coupling with an interparticle spacing of 1–2 nm. We find evidence for well-defined plasmonic modes of quasi-infinite chains, such as resonance splitting and multiple radiant modes. Beyond elementary simulations on the individual chain level, we introduce an advanced model, which considers the chain length distribution as well as disorder. The step toward macroscopic sample areas not only opens perspectives for a range of applications in sensing, plasmonic light harvesting, surface enhanced spectroscopy, and information technology but...

148 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent developments in colloid synthesis, functionalization and assembly with a focus on light management structures in photovoltaics is presented, highlighting the impact of interparticle spacing for templating.

134 citations

Journal ArticleDOI
TL;DR: This work uses gold nanoparticles self-assembled in a linear template on a titanium dioxide layer to study the dispersion relation with conventional ultraviolet–visible–near-infrared spectroscopic methods and identifies the optical band gaps as hybridized modes: plasmonic and photonic resonances.
Abstract: For many photonic applications, it is important to confine light of a specific wavelength at a certain volume of interest at low losses. So far, it is only possible to use the polarized light perpendicular to the solid grid lines to excite waveguide-plasmon polaritons in a waveguide-supported hybrid structure. In our work, we use a plasmonic grating fabricated by colloidal self-assembly and an ultrathin injection layer to guide the resonant modes selectively. We use gold nanoparticles self-assembled in a linear template on a titanium dioxide (TiO2) layer to study the dispersion relation with conventional ultraviolet-visible-near-infrared spectroscopic methods. Supported with finite-difference in time-domain simulations, we identify the optical band gaps as hybridized modes: plasmonic and photonic resonances. Compared to metallic grids, the observation range of hybridized guided modes can now be extended to modes along the nanoparticle chain lines. With future applications in energy conversion and optical filters employing these cost-efficient and upscalable directed self-assembly methods, we discuss also the application in refractive index sensing of the particle-based hybridized guided modes.

122 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

Journal ArticleDOI
01 Oct 2018-Nature
TL;DR: The formation of submicrometre-scale structure in perovskite light-emitting diodes can raise their external quantum efficiency beyond 20%, suggesting the possibility of both high efficiency and high brightness.
Abstract: Light-emitting diodes (LEDs), which convert electricity to light, are widely used in modern society—for example, in lighting, flat-panel displays, medical devices and many other situations. Generally, the efficiency of LEDs is limited by nonradiative recombination (whereby charge carriers recombine without releasing photons) and light trapping1–3. In planar LEDs, such as organic LEDs, around 70 to 80 per cent of the light generated from the emitters is trapped in the device4,5, leaving considerable opportunity for improvements in efficiency. Many methods, including the use of diffraction gratings, low-index grids and buckling patterns, have been used to extract the light trapped in LEDs6–9. However, these methods usually involve complicated fabrication processes and can distort the light-output spectrum and directionality6,7. Here we demonstrate efficient and high-brightness electroluminescence from solution-processed perovskites that spontaneously form submicrometre-scale structures, which can efficiently extract light from the device and retain wavelength- and viewing-angle-independent electroluminescence. These perovskites are formed simply by introducing amino-acid additives into the perovskite precursor solutions. Moreover, the additives can effectively passivate perovskite surface defects and reduce nonradiative recombination. Perovskite LEDs with a peak external quantum efficiency of 20.7 per cent (at a current density of 18 milliamperes per square centimetre) and an energy-conversion efficiency of 12 per cent (at a high current density of 100 milliamperes per square centimetre) can be achieved—values that approach those of the best-performing organic LEDs. The formation of submicrometre-scale structure in perovskite light-emitting diodes can raise their external quantum efficiency beyond 20%, suggesting the possibility of both high efficiency and high brightness.

1,404 citations

Journal Article
TL;DR: In this paper, the authors used electron beams instead of photons to detect plasmons as resonance peaks in the energy-loss spectra of sub-nanometre electron beams rastered on nanoparticles of well-defined geometrical parameters.
Abstract: Understanding how light interacts with matter at the nanometre scale is a fundamental issue in optoelectronics and nanophotonics. In particular, many applications (such as bio-sensing, cancer therapy and all-optical signal processing) rely on surface-bound optical excitations in metallic nanoparticles. However, so far no experimental technique has been capable of imaging localized optical excitations with sufficient resolution to reveal their dramatic spatial variation over one single nanoparticle. Here, we present a novel method applied on silver nanotriangles, achieving such resolution by recording maps of plasmons in the near-infrared/visible/ultraviolet domain using electron beams instead of photons. This method relies on the detection of plasmons as resonance peaks in the energy-loss spectra of subnanometre electron beams rastered on nanoparticles of well-defined geometrical parameters. This represents a significant improvement in the spatial resolution with which plasmonic modes can be imaged, and provides a powerful tool in the development of nanometre-level optics.

803 citations