scispace - formally typeset
Search or ask a question
Author

Tobias Höllerer

Other affiliations: University of California, University of Trier, Virginia Tech  ...read more
Bio: Tobias Höllerer is an academic researcher from University of California, Santa Barbara. The author has contributed to research in topics: Augmented reality & User interface. The author has an hindex of 48, co-authored 254 publications receiving 8972 citations. Previous affiliations of Tobias Höllerer include University of California & University of Trier.


Papers
More filters
Journal ArticleDOI
13 Oct 1997
TL;DR: A prototype system that combines the overlaid 3D graphics of augmented reality with the untethered freedom of mobile computing is described, to explore how these two technologies might together make possible wearable computer systems that can support users in their everyday interactions with the world.
Abstract: We describe a prototype system that combines together the overlaid 3D graphics of augmented reality with the untethered freedom of mobile computing The goal is to explore how these two technologies might together make possible wearable computer systems that can support users in their everyday interactions with the world We introduce an application that presents information about our university's campus, using a head-tracked, see-through, head-worn, 3D display, and an untracked, opaque, handheld, 2D display with stylus and trackpad We provide an illustrated explanation of how our prototype is used, and describe our rationale behind designing its software infrastructure and selecting the hardware on which it runs

916 citations

Journal ArticleDOI
TL;DR: An experimental mobile augmented reality system (MARS) testbed that employs different user interfaces to allow outdoor and indoor users to access and manage information that is spatially registered with the real world is described.

483 citations

Journal ArticleDOI
TL;DR: This work presents a carefully designed dataset of video sequences of planar textures with ground truth, which includes various geometric changes, lighting conditions, and levels of motion blur, and presents a comprehensive quantitative evaluation of detector-descriptor-based visual camera tracking based on this testbed.
Abstract: Applications for real-time visual tracking can be found in many areas, including visual odometry and augmented reality. Interest point detection and feature description form the basis of feature-based tracking, and a variety of algorithms for these tasks have been proposed. In this work, we present (1) a carefully designed dataset of video sequences of planar textures with ground truth, which includes various geometric changes, lighting conditions, and levels of motion blur, and which may serve as a testbed for a variety of tracking-related problems, and (2) a comprehensive quantitative evaluation of detector-descriptor-based visual camera tracking based on this testbed. We evaluate the impact of individual algorithm parameters, compare algorithms for both detection and description in isolation, as well as all detector-descriptor combinations as a tracking solution. In contrast to existing evaluations, which aim at different tasks such as object recognition and have limited validity for visual tracking, our evaluation is geared towards this application in all relevant factors (performance measures, testbed, candidate algorithms). To our knowledge, this is the first work that comprehensively compares these algorithms in this context, and in particular, on video streams.

441 citations

Proceedings ArticleDOI
11 Nov 2001
TL;DR: Algorithms that use upright rectangular extents to represent on the view plane a dynamic and efficient approximation of the occupied space containing the projections of visible portions of 3D objects, as well as the unoccupied space in which objects can be placed to avoid occlusion are introduced.
Abstract: We describe a view-management component for interactive 3D user interfaces. By view management, we mean maintaining visual constraints on the projections of objects on the view plane, such as locating related objects near each other, or preventing objects from occluding each other. Our view-management component accomplishes this by modifying selected object properties, including position, size, and transparency, which are tagged to indicate their constraints. For example, some objects may have geometric properties that are determined entirely by a physical simulation and which cannot be modified, while other objects may be annotations whose position and size are flexible.We introduce algorithms that use upright rectangular extents to represent on the view plane a dynamic and efficient approximation of the occupied space containing the projections of visible portions of 3D objects, as well as the unoccupied space in which objects can be placed to avoid occlusion. Layout decisions from previous frames are taken into account to reduce visual discontinuities. We present augmented reality and virtual reality examples to which we have applied our approach, including a dynamically labeled and annotated environment.

395 citations

Proceedings ArticleDOI
09 Sep 2012
TL;DR: An evaluation of an interactive hybrid recommendation system that generates item predictions from multiple social and semantic web resources indicates that explanation and interaction with a visual representation of the hybrid system increase user satisfaction and relevance of predicted content.
Abstract: This paper presents an interactive hybrid recommendation system that generates item predictions from multiple social and semantic web resources, such as Wikipedia, Facebook, and Twitter. The system employs hybrid techniques from traditional recommender system literature, in addition to a novel interactive interface which serves to explain the recommendation process and elicit preferences from the end user. We present an evaluation that compares different interactive and non-interactive hybrid strategies for computing recommendations across diverse social and semantic web APIs. Results of the study indicate that explanation and interaction with a visual representation of the hybrid system increase user satisfaction and relevance of predicted content.

277 citations


Cited by
More filters
Journal ArticleDOI

6,278 citations

Journal Article
TL;DR: Prospect Theory led cognitive psychology in a new direction that began to uncover other human biases in thinking that are probably not learned but are part of the authors' brain’s wiring.
Abstract: In 1974 an article appeared in Science magazine with the dry-sounding title “Judgment Under Uncertainty: Heuristics and Biases” by a pair of psychologists who were not well known outside their discipline of decision theory. In it Amos Tversky and Daniel Kahneman introduced the world to Prospect Theory, which mapped out how humans actually behave when faced with decisions about gains and losses, in contrast to how economists assumed that people behave. Prospect Theory turned Economics on its head by demonstrating through a series of ingenious experiments that people are much more concerned with losses than they are with gains, and that framing a choice from one perspective or the other will result in decisions that are exactly the opposite of each other, even if the outcomes are monetarily the same. Prospect Theory led cognitive psychology in a new direction that began to uncover other human biases in thinking that are probably not learned but are part of our brain’s wiring.

4,351 citations

01 Jan 2012

3,692 citations

Journal ArticleDOI
TL;DR: This work refers one to the original survey for descriptions of potential applications, summaries of AR system characteristics, and an introduction to the crucial problem of registration, including sources of registration error and error-reduction strategies.
Abstract: In 1997, Azuma published a survey on augmented reality (AR). Our goal is to complement, rather than replace, the original survey by presenting representative examples of the new advances. We refer one to the original survey for descriptions of potential applications (such as medical visualization, maintenance and repair of complex equipment, annotation, and path planning); summaries of AR system characteristics (such as the advantages and disadvantages of optical and video approaches to blending virtual and real, problems in display focus and contrast, and system portability); and an introduction to the crucial problem of registration, including sources of registration error and error-reduction strategies.

3,624 citations

Proceedings ArticleDOI
01 Dec 2013
TL;DR: Dense trajectories were shown to be an efficient video representation for action recognition and achieved state-of-the-art results on a variety of datasets are improved by taking into account camera motion to correct them.
Abstract: Recently dense trajectories were shown to be an efficient video representation for action recognition and achieved state-of-the-art results on a variety of datasets. This paper improves their performance by taking into account camera motion to correct them. To estimate camera motion, we match feature points between frames using SURF descriptors and dense optical flow, which are shown to be complementary. These matches are, then, used to robustly estimate a homography with RANSAC. Human motion is in general different from camera motion and generates inconsistent matches. To improve the estimation, a human detector is employed to remove these matches. Given the estimated camera motion, we remove trajectories consistent with it. We also use this estimation to cancel out camera motion from the optical flow. This significantly improves motion-based descriptors, such as HOF and MBH. Experimental results on four challenging action datasets (i.e., Hollywood2, HMDB51, Olympic Sports and UCF50) significantly outperform the current state of the art.

3,487 citations