scispace - formally typeset
Search or ask a question
Author

Tobias Wöhrle

Bio: Tobias Wöhrle is an academic researcher from University of Stuttgart. The author has contributed to research in topics: Liquid crystal & Mesophase. The author has an hindex of 9, co-authored 16 publications receiving 637 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Triphenylbenzenes with different substitution patterns at the outer phenyl rings have been successfully synthesised and based on X-ray diffraction data a stacking model was proposed in which the single molecules aggregate to helical columns forming a mesophase.
Abstract: Triphenylbenzenes with different substitution patterns at the outer phenyl rings have been successfully synthesised. Sixfold n-alkoxy substitution was insufficient for mesomorphism, but already increasing the number of side chains by three methoxy groups led to liquid crystalline behaviour and mesophase formation. Symmetrical triphenylbenzenes with nine n-alkoxy side chains (≥C9) formed broad enantiotropic mesophases. The symmetry of the liquid crystalline phases was unambiguously determined by X-ray diffraction measurements as Colh and Colho for symmetry-reduced methoxy–alkoxy derivatives and symmetrical nona-alkoxy-triphenylbenzenes, respectively. Based on X-ray diffraction data a stacking model was proposed in which the single molecules aggregate to helical columns forming a mesophase.

27 citations

Journal ArticleDOI
TL;DR: Results are discussed in terms of the packing parameters, which indicate that the phase behaviour of the thermotropic tyrosine-based ILCs shows analogies to those of lyotropic liquid crystals.
Abstract: Synthetic strategies were developed to prepare l-tyrosine-based ionic liquid crystals with structural variations at the carboxylic and phenolic OH groups as well as the amino functionality. Salt metathesis additionally led to counterion variation. The liquid-crystalline properties were investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and X-ray diffraction (WAXS, SAXS). The symmetrical ILC chlorides bearing the same alkyl chain at both the ester and ether but either an acyclic or cyclic guanidinium group displayed enantiotropic SmA2 mesophases with phase widths of 31–88 K irrespective of the head group. It was particularly the replacement of chloride in the acyclic guanidinium ILC by hexafluorophosphate that induced a phase change from SmA2 to Colr. This phase change was attributed to a higher curvature of the interface due to the larger anion, which increased the effective head group cross-sectional area of the amphiphilic ILC. The unsymmetrical acyclic guanidinium chlorides, bearing a constant C14 ester and variable alkyl chains on the phenolic position, formed enantiotropic SmA2 phases. The derivative with the largest difference in chain lengths, however, displayed a Colr phase, resulting from discoid aggregates of the cone-shaped guanidinium chloride. The results are discussed in terms of the packing parameters, which indicate that the phase behaviour of the thermotropic tyrosine-based ILCs shows analogies to those of lyotropic liquid crystals.

19 citations

Journal ArticleDOI
TL;DR: Sterically congested o-terphenyl crown ethers with alkoxy substituents at the 2,3,4-position or 3,4,5-position were synthesized from the corresponding tetrabromodibenzo[15]crown-5 and subsequently cyclized to the corresponding triphenylenes utilizing the Scholl reaction.
Abstract: Sterically congested o-terphenyl crown ethers with alkoxy substituents at the 2,3,4-position or 3,4,5-position were synthesized from the corresponding tetrabromodibenzo[15]crown-5 and the corresponding boronic acids or borolanes via Suzuki cross-coupling and subsequently cyclized to the corresponding triphenylenes utilizing the Scholl reaction. Both series of compounds were investigated by differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction (SAXS, WAXS) regarding their mesomorphic properties. While all but one of the 3,4,5-substituted derivatives displayed liquid crystalline behavior (Colh and Colr), only the 2,3,4-substititued triphenylene with the shortest alkoxy chains was liquid crystalline (Colr).

19 citations

Journal ArticleDOI
TL;DR: A new synthetic approach to highly substituted triphenylboroxines 11 is described, which shows broad mesophases for a minimum alkyl chain length of C9 and a columnar hexagonal (Colh) mesophase symmetry that was confirmed by X-ray diffraction experiments.
Abstract: A new synthetic approach to highly substituted triphenylboroxines 11 is described. Their mesomorphic properties were investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and X-ray diffraction (SAXS, WAXS). The tris(3,4,5-trialkyloxy)phenyl functionalized derivatives 11b-e showed broad mesophases for a minimum alkyl chain length of C9. The phase widths ranged from 110 K to 77 K near room temperature, thus decreasing with enhanced alkyl chain lengths. Textures observed under POM indicated a columnar hexagonal (Colh) mesophase symmetry that was confirmed by X-ray diffraction experiments.

18 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The recent advances in supramolecular helical assemblies formed from chiral and achiral small molecules, oligomers (foldamers), and helical and nonhelical polymers from the viewpoints of their formations with unique chiral phenomena, such as amplification of chirality during the dynamic helically assembled processes, properties, and specific functionalities.
Abstract: In this review, we describe the recent advances in supramolecular helical assemblies formed from chiral and achiral small molecules, oligomers (foldamers), and helical and nonhelical polymers from the viewpoints of their formations with unique chiral phenomena, such as amplification of chirality during the dynamic helically assembled processes, properties, and specific functionalities, some of which have not been observed in or achieved by biological systems. In addition, a brief historical overview of the helical assemblies of small molecules and remarkable progress in the synthesis of single-stranded and multistranded helical foldamers and polymers, their properties, structures, and functions, mainly since 2009, will also be described.

1,235 citations

Journal ArticleDOI
01 Jun 1965-Nature
TL;DR: Polycyclic Hydrocarbons Vol. 1, No. 2 as mentioned in this paper, with a chapter on carcinogenesis by Regina Schoental. Pp. lvii + 487.
Abstract: Polycyclic Hydrocarbons Vol. 1. Pp. xxvi + 487. 126S. (With a chapter on carcinogenesis by Regina Schoental.) Vol. 2. Pp. lvii + 487. 140s. By E. Clar. (London and New York: Academic Press; Berlin: Springer-Verlag, 1964.)

1,175 citations

Journal ArticleDOI
TL;DR: This Review focuses on the developments of light-driven liquid crystalline materials containing photochromic components over the past decade, and the developed materials possess huge potential for applications in optics, photonics, adaptive materials, nanotechnology, etc.
Abstract: Light-driven phenomena both in living systems and nonliving materials have enabled truly fascinating and incredible dynamic architectures with terrific forms and functions. Recently, liquid crystalline materials endowed with photoresponsive capability have emerged as enticing systems. In this Review, we focus on the developments of light-driven liquid crystalline materials containing photochromic components over the past decade. Design and synthesis of photochromic liquid crystals (LCs), photoinduced phase transitions in LC, and photoalignment and photoorientation of LCs have been covered. Photomodulation of pitch, polarization, lattice constant and handedness inversion of chiral LCs is discussed. Light-driven phenomena and properties of liquid crystalline polymers, elastomers, and networks have also been analyzed. The applications of photoinduced phase transitions, photoalignment, photomodulation of chiral LCs, and photomobile polymers have been highlighted wherever appropriate. The combination of photoc...

576 citations

Journal ArticleDOI
TL;DR: An account on the state of the art of emerging chiral liquid crystalline nanostructured materials and their technological applications is provided and a perspective on the future scope, opportunities, and challenges is provided.
Abstract: Liquid crystals (LCs) are omnipresent in living matter, whose chirality is an elegant and distinct feature in certain plant tissues, the cuticles of crabs, beetles, arthropods, and beyond. Taking inspiration from nature, researchers have recently devoted extensive efforts toward developing chiral liquid crystalline materials with self-organized nanostructures and exploring their potential applications in diverse fields ranging from dynamic photonics to energy and safety issues. In this review, an account on the state of the art of emerging chiral liquid crystalline nanostructured materials and their technological applications is provided. First, an overview on the significance of chiral liquid crystalline architectures in various living systems is given. Then, the recent significant progress in different chiral liquid crystalline systems including thermotropic LCs (cholesteric LCs, cubic blue phases, achiral bent-core LCs, etc.) and lyotropic LCs (DNA LCs, nanocellulose LCs, and graphene oxide LCs) is showcased. The review concludes with a perspective on the future scope, opportunities, and challenges in these truly advanced functional soft materials and their promising applications.

229 citations