scispace - formally typeset
Search or ask a question

Showing papers by "Toby J. Gibson published in 2020"


Journal ArticleDOI
TL;DR: The guidelines of this collaborative effort, the current status of contributed data, and the PDBe-KB infrastructure, which includes the data exchange format, the deposition system for added value annotations, the distributable database containing the assembledData, and programmatic access endpoints are described.
Abstract: The Protein Data Bank in Europe-Knowledge Base (PDBe-KB, https://pdbe-kb.org) is a community-driven, collaborative resource for literature-derived, manually curated and computationally predicted structural and functional annotations of macro-molecular structure data, contained in the Protein Data Bank (PDB). The goal of PDBe-KB is two-fold: (i) to increase the visibility and reduce the fragmentation of annotations contributed by specialist data resources, and to make these data more findable, accessible, interoperable and reusable (FAIR) and (ii) to place macromolecular structure data in their biological context, thus facilitating their use by the broader scientific community in fundamental and applied research. Here, we describe the guidelines of this collaborative effort, the current status of contributed data, and the PDBe-KB infrastructure, which includes the data exchange format, the deposition system for added value annotations, the distributable database containing the assembled data, and programmatic access endpoints. We also describe a series of novel web-pages-the PDBe-KB aggregated views of structure data-which combine information on macromolecular structures from many PDB entries. We have recently released the first set of pages in this series, which provide an overview of available structural and functional information for a protein of interest, referenced by a UniProtKB accession.

79 citations


Journal ArticleDOI
TL;DR: The findings identify several molecular links and testable hypotheses that could uncover mechanisms of SARS-CoV-2 attachment, entry, and replication against which it may be possible to develop host-directed therapies that dampen viral infection and disease progression.
Abstract: The primary cell surface receptor for SARS-CoV-2 is the angiotensin-converting enzyme 2 (ACE2). Recently it has been noticed that the viral Spike protein has an RGD motif, suggesting that cell surface integrins may be co-receptors. We examined the sequences of ACE2 and integrins with the Eukaryotic Linear Motif resource, ELM, and were presented with candidate short linear motifs (SLiMs) in their short, unstructured, cytosolic tails with potential roles in endocytosis, membrane dynamics, autophagy, cytoskeleton and cell signalling. These SLiM candidates are highly conserved in vertebrates. They suggest potential interactions with the AP2 mu2 subunit as well as I-BAR, LC3, PDZ, PTB and SH2 domains found in signalling and regulatory proteins present in epithelial lung cells. Several motifs overlap in the tail sequences, suggesting that they may act as molecular switches, often involving tyrosine phosphorylation status. Candidate LIR motifs are present in the tails of ACE2 and integrin beta3, suggesting that these proteins can directly recruit autophagy components. We also noticed that the extracellular part of ACE2 has a conserved MIDAS structural motif, which are commonly used by beta integrins for ligand binding, potentially supporting the proposal that integrins and ACE2 share common ligands. The findings presented here identify several molecular links and testable hypotheses that might help uncover the mechanisms of SARS-CoV-2 attachment, entry and replication, and strengthen the possibility that it might be possible to develop host-directed therapies to dampen the efficiency of viral entry and hamper disease progression. The strong sequence conservation means that these putative SLiMs are good candidates: Nevertheless, SLiMs must always be validated by experimentation before they can be stated to be functional.

47 citations


Journal ArticleDOI
TL;DR: How drugs targeting SLiM-regulated cell signaling networks are being evaluated for interference with bacterial infections is discussed, fearing that this emerging anti-infective opportunity may become an essential contributor to antibiotic replacement strategies.

28 citations


Journal ArticleDOI
01 Jan 2020-Database
TL;DR: A set of tools and a web resource, ‘articles.ELM’, to rapidly identify the motif literature articles pertinent to a researcher’s interest, thereby improving the visibility of motif literature and simplifying the recovery of valuable biological insights sequestered within scientific articles.
Abstract: Modern biology produces data at a staggering rate. Yet, much of these biological data is still isolated in the text, figures, tables and supplementary materials of articles. As a result, biological information created at great expense is significantly underutilised. The protein motif biology field does not have sufficient resources to curate the corpus of motif-related literature and, to date, only a fraction of the available articles have been curated. In this study, we develop a set of tools and a web resource, 'articles.ELM', to rapidly identify the motif literature articles pertinent to a researcher's interest. At the core of the resource is a manually curated set of about 8000 motif-related articles. These articles are automatically annotated with a range of relevant biological data allowing in-depth search functionality. Machine-learning article classification is used to group articles based on their similarity to manually curated motif classes in the Eukaryotic Linear Motif resource. Articles can also be manually classified within the resource. The 'articles.ELM' resource permits the rapid and accurate discovery of relevant motif articles thereby improving the visibility of motif literature and simplifying the recovery of valuable biological insights sequestered within scientific articles. Consequently, this web resource removes a critical bottleneck in scientific productivity for the motif biology field. Database URL: http://slim.icr.ac.uk/articles/.

3 citations


Book ChapterDOI
TL;DR: This protocol describes the steps involved in annotating new motifs and how to submit them to the Eukaryotic Linear Motif resource, a repository to store and catalogue the scientific discoveries of motifs.
Abstract: Over the past few years, it has become apparent that approximately 35% of the human proteome consists of intrinsically disordered regions. Many of these disordered regions are rich in short linear motifs (SLiMs) which mediate protein-protein interactions. Although these motifs are short and often partially conserved, they are involved in many important aspects of protein function, including cleavage, targeting, degradation, docking, phosphorylation, and other posttranslational modifications. The Eukaryotic Linear Motif resource (ELM) was established over 15 years ago as a repository to store and catalogue the scientific discoveries of motifs. Each motif in the database is annotated and curated manually, based on the experimental evidence gathered from publications. The entries themselves are submitted to ELM by filling in two annotation templates designed for motif class and motif instance annotation. In this protocol, we describe the steps involved in annotating new motifs and how to submit them to ELM.

3 citations


Posted ContentDOI
29 Mar 2020-bioRxiv
TL;DR: It is shown that the PDZ3:CRIPT interaction is an ancient interaction, which was present in the last common ancestor of Eukaryotes, and that high affinity is maintained in most extant animal phyla.
Abstract: The postsynaptic density extends across the postsynaptic dendritic spine with Discs large (DLG) as the most abundant scaffolding protein. DLG dynamically alters the structure of the postsynaptic density, thus controlling the function and distribution of specific receptors at the synapse. PDZ domains make up one of the most abundant protein interaction domain families in animals. One important interaction governing postsynaptic architecture is that between the PDZ3 domain from DLG and cysteine-rich interactor of PDZ3 (CRIPT). However, little is know regarding functional evolution of the PDZ3:CRIPT interaction. Here, we subjected PDZ3 and CRIPT to ancestral sequence reconstruction, resurrection and biophysical experiments. We show that the PDZ3:CRIPT interaction is an ancient interaction, which was present in the last common ancestor of Eukaryotes, and that high affinity is maintained in most extant animal phyla. However, affinity is low in nematodes and insects, raising questions about the physiological function of the interaction in species from these animal groups. Our findings demonstrate how an apparently established protein-protein interaction involved in cellular scaffolding in bilaterians can suddenly be subject to dynamic evolution including possible loss of function.

3 citations