scispace - formally typeset
Search or ask a question
Author

Todd A. Keith

Bio: Todd A. Keith is an academic researcher from McMaster University. The author has contributed to research in topics: Atoms in molecules & Magnetic susceptibility. The author has an hindex of 9, co-authored 10 publications receiving 3813 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the direct implementation of the GIAO and CSGT methods for calculating nuclear magnetic shielding tensors at both the Hartree-Fock and density functional levels of theory is presented.
Abstract: The direct (recomputation of two‐electron integrals) implementation of the gauge‐including atomic orbital (GIAO) and the CSGT (continuous set of gauge transformations) methods for calculating nuclear magnetic shielding tensors at both the Hartree‐Fock and density functional levels of theory are presented. Isotropic 13C, 15N, and 17O magnetic shielding constants for several molecules, including taxol (C47H51NO14 using 1032 basis functions) are reported. Shielding tensor components determined using the GIAO and CSGT methods are found to converge to the same value at sufficiently large basis sets; however, GIAO shielding tensor components for atoms other than carbon are found to converge faster with respect to basis set size than those determined using the CSGT method for both Hartree‐Fock and DFT. For molecules where electron correlation effects are significant, shielding constants determined using (gradient‐corrected) pure DFT or hybrid methods (including a mixture of Hartree‐Fock exchange and DFT exchange...

1,998 citations

Journal ArticleDOI
TL;DR: In this paper, a new method is described for the calculation of the magnetic susceptibility and nuclear magnetic shielding tensors using a separate gauge origin for each point in space to calculate the magnetically induced current.

845 citations

Journal ArticleDOI
TL;DR: In this paper, an individual gauge for atoms in molecules is presented for relatively accurate ab initio calculations of molecular magnetic response properties, where the magnetic susceptibility and nuclear magnetic shielding tensors can be expressed in terms of the induced current density as a sum of separately determined atomic contributions.

418 citations

Journal ArticleDOI
TL;DR: In this article, the topology of the first-order current density induced in a molecule by an applied magnetic field is analyzed and classified in terms of the properties of its critical points, as determined by the 3×3 coefficient matrix of the asymmetric tensor ∇J(1), which yields the topological indices for classifying the possible critical points in the J(1)(r) field.
Abstract: The topology of the first‐order current density J(1)(r) induced in a molecule by an applied magnetic field is analyzed and classified in terms of the properties of its critical points, as determined by the 3×3 coefficient matrix of the asymmetric tensor ∇J(1). The eigenvalues of this tensor yield the topological indices for classifying the possible critical points in the J(1)(r) field. The phase portraits describing the current flow associated with these critical points and their role in determining the structure of a molecular current distribution are illustrated. A molecular current distribution is a fully three‐dimensional vector field. In addition to closed loops of current, it exhibits one‐ and two‐dimensional sources and sinks which generate surfaces, spirals, and single lines of current. The nonisolated critical points lie on stagnation paths which, along with the isolated critical points, fully characterize the current distribution. The antisymmetric component of ∇J(1) is the curl of J(1) which defines the vorticity of the current distribution. Whether a region of current flow is diamagnetic or paramagnetic depends on the location of its critical point relative to the atomic shell structure exhibited by the vorticity field. The group theoretical classification of the induced current is described.

245 citations

Journal ArticleDOI
TL;DR: In this paper, it is shown that the empirical classification of the observations of chemistry in terms of the properties assigned to functional groups is a consequence of and is predicted by physics, and that the atoms and functional groups of chemistry can be identified with bounded space-filling objects whose properties are defined by quantum mechanics.
Abstract: It is the purpose of this review to demonstrate that the empirical classification of the observations of chemistry in terms of the properties assigned to functional groups is a consequence of and is predicted by physics. This is accomplished by showing that the atoms and functional groups of chemistry can be identified with bounded space-filling objects whose properties are defined by quantum mechanics. The quantum mechanical definition of a group is combined with a new pictorial representation of its form to obtain a unified picture which should make it eminently recognizable to chemists. This picture, when combined with the demonstrated ability of these groups to recover the measured properties of atoms in molecules, is offered as one which meets the expectations a chemist associates with the concept of a functional group. The manner in which this physical definition of a group differs fundamentally from models of functional groups based upon molecular orbital theory is discussed.

216 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, an analysis of the performances of a parameter free density functional model (PBE0) obtained combining the so-called PBE generalized gradient functional with a predefined amount of exact exchange is presented.
Abstract: We present an analysis of the performances of a parameter free density functional model (PBE0) obtained combining the so called PBE generalized gradient functional with a predefined amount of exact exchange. The results obtained for structural, thermodynamic, kinetic and spectroscopic (magnetic, infrared and electronic) properties are satisfactory and not far from those delivered by the most reliable functionals including heavy parameterization. The way in which the functional is derived and the lack of empirical parameters fitted to specific properties make the PBE0 model a widely applicable method for both quantum chemistry and condensed matter physics.

13,411 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

Journal ArticleDOI
TL;DR: The hydrogen bond is the most important of all directional intermolecular interactions, operative in determining molecular conformation, molecular aggregation, and the function of a vast number of chemical systems ranging from inorganic to biological.
Abstract: The hydrogen bond is the most important of all directional intermolecular interactions. It is operative in determining molecular conformation, molecular aggregation, and the function of a vast number of chemical systems ranging from inorganic to biological. Research into hydrogen bonds experienced a stagnant period in the 1980s, but re-opened around 1990, and has been in rapid development since then. In terms of modern concepts, the hydrogen bond is understood as a very broad phenomenon, and it is accepted that there are open borders to other effects. There are dozens of different types of X-H.A hydrogen bonds that occur commonly in the condensed phases, and in addition there are innumerable less common ones. Dissociation energies span more than two orders of magnitude (about 0.2-40 kcal mol(-1)). Within this range, the nature of the interaction is not constant, but its electrostatic, covalent, and dispersion contributions vary in their relative weights. The hydrogen bond has broad transition regions that merge continuously with the covalent bond, the van der Waals interaction, the ionic interaction, and also the cation-pi interaction. All hydrogen bonds can be considered as incipient proton transfer reactions, and for strong hydrogen bonds, this reaction can be in a very advanced state. In this review, a coherent survey is given on all these matters.

5,153 citations

Journal ArticleDOI
TL;DR: Molden is a software package for pre- and postprocessing of computational chemistry program data that features different options to display MOLecular electronic DENsity, each focusing on a different structural aspect: molecular orbitals, electron density, molecular minus atomic density and the Laplacian of the electron density.
Abstract: Molden is a software package for pre- and postprocessing of computational chemistry program data. Interfacing to the ab initio programs Games-US/UK and Gaussian and to the semi-empirical package MOPAC is provided. The emphasis is on computation and visualization of electronic and molecular properties but, e.g., reaction pathways can be simulated as well. Some molecular properties of interest are processed directly from the output of the computational chemistry programs, others are calculated in MOLDEN before display. The package features different options to display MOLecular electronic DENsity, each focusing on a different structural aspect: molecular orbitals, electron density, molecular minus atomic density and the Laplacian of the electron density. To display difference density, either the spherically averaged atomic density or the oriented ground state atomic density can be used for a number of standard basis sets. The quantum mechanical electrostatic potential or a distributed multiple expansion derived electrostatic potential can be calculated and atomic charges can be fitted to these potentials calculated on Connolly surface(s). Reaction pathways and molecular vibrations can be visualized. Input structures can be generated with a Z-matrix editor. A variety of graphics languages is supported: XWindows, postscript, VRML and Povray format.

2,932 citations

Journal ArticleDOI
TL;DR: A continuous surface charge (CSC) approach is introduced that leads to a smooth and robust formalism for the PCM models and achieves a clear separation between "model" and "cavity" which, together with simple generalizations of modern integral codes, is all that is required for an extensible and efficient implementation of thePCM models.
Abstract: Continuum solvation models are appealing because of the simplified yet accurate description they provide of the solvent effect on a solute, described either by quantum mechanical or classical methods. The polarizable continuum model (PCM) family of solvation models is among the most widely used, although their application has been hampered by discontinuities and singularities arising from the discretization of the integral equations at the solute-solvent interface. In this contribution we introduce a continuous surface charge (CSC) approach that leads to a smooth and robust formalism for the PCM models. We start from the scheme proposed over ten years ago by York and Karplus and we generalize it in various ways, including the extension to analytic second derivatives with respect to atomic positions. We propose an optimal discrete representation of the integral operators required for the determination of the apparent surface charge. We achieve a clear separation between “model” and “cavity” which, together with simple generalizations of modern integral codes, is all that is required for an extensible and efficient implementation of the PCM models. Following this approach we are now able to introduce solvent effects on energies, structures, and vibrational frequencies (analytical first and second derivatives with respect to atomic coordinates), magnetic properties (derivatives with respect of magnetic field using GIAOs), and in the calculation more complex properties like frequency-dependent Raman activities, vibrational circular dichroism, and Raman optical activity.

2,033 citations