scispace - formally typeset
Search or ask a question
Author

Todd B. Marder

Bio: Todd B. Marder is an academic researcher from University of Würzburg. The author has contributed to research in topics: Borylation & Catalysis. The author has an hindex of 90, co-authored 477 publications receiving 26158 citations. Previous affiliations of Todd B. Marder include Durham University & Hong Kong University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: Investigations revealed that the conversion of C-H bonds to C-B bonds was both thermodynamically and kinetically favorable and highlighted the accessible barriers for C- H bond cleavage and B-C bond formation during the borylation of alkanes and arenes.
Abstract: A number of studies were conducted to demonstrate C-H activation for the construction of C-B bonds. Investigations revealed that the conversion of C-H bonds to C-B bonds was both thermodynamically and kinetically favorable. The reaction at a primary C-H bond of methane or a higher alkene B 2(OR)4 formed an alkylboronate ester R' -B(OR)2 and the accompanying borane H-B(OR2. The ester and the borane were formed on the basis of calculated bond energies for methylboronates and dioaborolanes. The rates of key steps along the reaction pathway for the conversion of a C-H bond in an alkane or arene to the C-B bond in an alkyl or arylboronate ester were favorable. These studies also highlighted the accessible barriers for C-H bond cleavage and B-C bond formation during the borylation of alkanes and arenes.

2,108 citations

Journal ArticleDOI
TL;DR: Although known for over 90 years, only in the past two decades has the chemistry of diboron(4) compounds been extensively explored and these compounds now feature prominently in both metal-catalyzed and metal-free methodologies for the formation of B-C bonds and other processes.
Abstract: Although known for over 90 years, only in the past two decades has the chemistry of diboron(4) compounds been extensively explored. Many interesting structural features and reaction patterns have emerged, and more importantly, these compounds now feature prominently in both metal-catalyzed and metal-free methodologies for the formation of B–C bonds and other processes.

684 citations

Journal ArticleDOI
TL;DR: In this article, a short review of the optical properties of three-coordinate boron in the main chain of an organic molecule is presented, with a focus on its properties as an π-acceptor in conjugated organic molecules.
Abstract: Three-coordinate boron, with its vacant p-orbital, is a useful π-acceptor in conjugated organic molecules. These materials have interesting linear, as well as first- and second-order nonlinear, optical properties, exhibit two-photon-excited fluorescence and fluoride ion sensing properties, and can serve as emissive and/or electron-transport layers in OLEDs. Polymers containing three-coordinate boron in the main chain also display interesting optical properties. These features are all addressed in this short review.

667 citations

Journal ArticleDOI
TL;DR: In this article, a minireview summarizes recent work on compounds with 3-and 4-coordinate boron as well as borons clusters, placing it in the context of prior studies by the research groups of Williams and Glowgowski, Kaim, Lequan, and Marder.
Abstract: Electrooptical and electronic materials are the subject of much research interest, whereby the focus has often been on electron-rich organic molecules. In the past years, new routes to electron-deficient systems have been developed that take advantage of the fact that three-coordinate boron is isoelectronic and isostructural with a positively charged carbocation, which allows neutral, p-type materials to be synthesized directly. This minireview summarizes recent work on compounds with 3- and 4-coordinate boron as well as boron clusters, placing it in the context of prior studies by the research groups of Williams and Glowgowski, Kaim, Lequan, and Marder.

642 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

01 Jan 2016
TL;DR: The principles of fluorescence spectroscopy is universally compatible with any devices to read and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading principles of fluorescence spectroscopy. As you may know, people have look hundreds times for their favorite novels like this principles of fluorescence spectroscopy, but end up in malicious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they cope with some harmful bugs inside their desktop computer. principles of fluorescence spectroscopy is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the principles of fluorescence spectroscopy is universally compatible with any devices to read.

2,960 citations

Journal ArticleDOI
TL;DR: This review summarizes the development and scope of carboxylates as cocatalysts in transition-metal-catalyzed C-H functionalizations until autumn 2010 and proposes new acronyms, such as CMD (concerted metalationdeprotonation), IES (internal electrophilic substitution), or AMLA (ambiphilic metal ligand activation), which describe related mechanisms.
Abstract: The site-selective formation of carbon-carbon bonds through direct functionalizations of otherwise unreactive carbon-hydrogen bonds constitutes an economically attractive strategy for an overall streamlining of sustainable syntheses. In recent decades, intensive research efforts have led to the development of various reaction conditions for challenging C-H bond functionalizations, among which transition-metal-catalyzed transformations arguably constitute thus far the most valuable tool. For instance, the use of inter alia palladium, ruthenium, rhodium, copper, or iron complexes set the stage for chemo-, site-, diastereo-, and/or enantioselective C-H bond functionalizations. Key to success was generally a detailed mechanistic understanding of the elementary C-H bond metalation step, which depending on the nature of the metal fragment can proceed via several distinct reaction pathways. Traditionally, three different modes of action were primarily considered for CH bond metalations, namely, (i) oxidative addition with electronrich late transition metals, (ii) σ-bond metathesis with early transition metals, and (iii) electrophilic activation with electrondeficient late transition metals (Scheme 1). However, more recent mechanistic studies indicated the existence of a continuum of electrophilic, ambiphilic, and nucleophilic interactions. Within this continuum, detailed experimental and computational analysis provided strong evidence for novel C-H bond metalationmechanisms relying on the assistance of a bifunctional ligand bearing an additional Lewis-basic heteroatom, such as that found in (heteroatom-substituted) secondary phosphine oxides or most prominently carboxylates (Scheme 1, iv). This novel insight into the nature of stoichiometric metalations has served as stimulus for the development of novel transformations based on cocatalytic amounts of carboxylates, which significantly broadened the scope of C-H bond functionalizations in recent years, with most remarkable progress being made in palladiumor ruthenium-catalyzed direct arylations and direct alkylations. These carboxylate-assisted C-H bond transformations were mostly proposed to proceed via a mechanism in which metalation takes place via a concerted base-assisted deprotonation. To mechanistically differentiate these intramolecular metalations new acronyms have recently been introduced into the literature, such as CMD (concerted metalationdeprotonation), IES (internal electrophilic substitution), or AMLA (ambiphilic metal ligand activation), which describe related mechanisms and will be used below where appropriate. This review summarizes the development and scope of carboxylates as cocatalysts in transition-metal-catalyzed C-H functionalizations until autumn 2010. Moreover, experimental and computational studies on stoichiometric metalation reactions being of relevance to the mechanism of these catalytic processes are discussed as well. Mechanistically related C-H bond cleavage reactions with ruthenium or iridium complexes bearing monodentate ligands are, however, only covered with respect to their working mode, and transformations with stoichiometric amounts of simple acetate bases are solely included when their mechanism was suggested to proceed by acetate-assisted metalation.

2,820 citations

Journal ArticleDOI
TL;DR: Important vinylgold intermediates, the transmetalation from gold to other transition metals, the development of new ligands for gold catalysis, and significant contributions from computational chemistry are other crucial points for the field highlighted here.
Abstract: Although homogeneous gold catalysis was known previously, an exponential growth was only induced 12 years ago. The key findings which induce that rise of the field are discussed. This includes early reactions of allenes and furanynes and intermediates of these conversions as well as hydroarylation reactions. Other substrate types addressed are alkynyl epoxides and N-propargyl carboxamides. Important vinylgold intermediates, the transmetalation from gold to other transition metals, the development of new ligands for gold catalysis, and significant contributions from computational chemistry are other crucial points for the field highlighted here.

2,792 citations