scispace - formally typeset
Search or ask a question
Author

Todd B. Pittman

Bio: Todd B. Pittman is an academic researcher from University of Maryland, Baltimore County. The author has contributed to research in topics: Photon & Quantum computer. The author has an hindex of 27, co-authored 131 publications receiving 4991 citations. Previous affiliations of Todd B. Pittman include Johns Hopkins University Applied Physics Laboratory & Johns Hopkins University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a two-photon optical imaging experiment was performed based on the quantum nature of the signal and idler photon pairs produced in spontaneous parametric down-conversion, where an aperture placed in front of a fixed detector is illuminated by the signal beam through a convex lens.
Abstract: A two-photon optical imaging experiment was performed based on the quantum nature of the signal and idler photon pairs produced in spontaneous parametric down-conversion. An aperture placed in front of a fixed detector is illuminated by the signal beam through a convex lens. A sharp magnified image of the aperture is found in the coincidence counting rate when a mobile detector is scanned in the transverse plane of the idler beam at a specific distance in relation to the lens.

1,651 citations

Journal ArticleDOI
TL;DR: In this paper, the operation of several quantum logic operations of an elementary nature, including a quantum parity check and a quantum encoder, and how they may be combined to implement a controlled-NOT (CNOT) gate are described.
Abstract: It has previously been shown that probabilistic quantum logic operations may be performed using linear optical elements, additional photons (ancilla), and post-selection based on the output of single-photon detectors. Here we describe the operation of several quantum logic operations of an elementary nature, including a quantum parity check and a quantum encoder, and we show how they may be combined to implement a controlled-NOT (CNOT) gate. All of these gates may be constructed using polarizing beam splitters that completely transmit one state of polarization and totally reflect the orthogonal state of polarization, which allows a simple explanation of each operation. We also describe a polarizing beam splitter implementation of a CNOT gate that is closely analogous to the quantum teleportation technique previously suggested by Gottesman and Chuang [Nature 402, 390 (1999)]. Finally, our approach has the interesting feature that it makes practical use of a quantum-eraser technique.

335 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the use of time-multiplexing techniques that allow ordinary single-photon detectors, such as silicon avalanche photodiodes, to be used as photon-number-resolving detectors.
Abstract: Photon-number-resolving detectors are needed for a variety of applications including linear-optics quantum computing. Here we describe the use of time-multiplexing techniques that allow ordinary single-photon detectors, such as silicon avalanche photodiodes, to be used as photon-number-resolving detectors. The ability of such a detector to correctly measure the number of photons for an incident number state is analyzed. The predicted results for an incident coherent state are found to be in good agreement with the results of a proof-of-principle experimental demonstration.

321 citations

Journal ArticleDOI
TL;DR: In this article, a probabilistic controlled-not-gate for single photons was demonstrated using a single ancilla photon in a device constructed using linear optical elements, and the successful operation of the controlled-NOT gate relied on post-selected three-photon interference effects.
Abstract: We report a proof-of-principle demonstration of a probabilistic controlled-NOT gate for single photons. Single-photon control and target qubits were mixed with a single ancilla photon in a device constructed using only linear optical elements. The successful operation of the controlled-NOT gate relied on post-selected three-photon interference effects, which required the detection of the photons in the output modes.

244 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete- variable, continuous-variable, and distributed-phase-reference protocols).
Abstract: Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on an eavesdropper's power. This article provides a concise up-to-date review of QKD, biased toward the practical side. Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete-variable, continuous-variable, and distributed-phase-reference protocols).

2,926 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the original theory and its improvements, and a few examples of experimental two-qubit gates are given, and the use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.
Abstract: Linear optics with photon counting is a prominent candidate for practical quantum computing. The protocol by Knill, Laflamme, and Milburn [2001, Nature (London) 409, 46] explicitly demonstrates that efficient scalable quantum computing with single photons, linear optical elements, and projective measurements is possible. Subsequently, several improvements on this protocol have started to bridge the gap between theoretical scalability and practical implementation. The original theory and its improvements are reviewed, and a few examples of experimental two-qubit gates are given. The use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.

2,483 citations

Journal ArticleDOI
19 Nov 2004-Science
TL;DR: This work has shown that conventional bounds to the precision of measurements such as the shot noise limit or the standard quantum limit are not as fundamental as the Heisenberg limits and can be beaten using quantum strategies that employ “quantum tricks” such as squeezing and entanglement.
Abstract: Quantum mechanics, through the Heisenberg uncertainty principle, imposes limits on the precision of measurement. Conventional measurement techniques typically fail to reach these limits. Conventional bounds to the precision of measurements such as the shot noise limit or the standard quantum limit are not as fundamental as the Heisenberg limits and can be beaten using quantum strategies that employ “quantum tricks” such as squeezing and entanglement.

2,421 citations

Journal ArticleDOI
TL;DR: The first quantum technology that harnesses quantum mechanical effects for its core operation has arrived in the form of commercially available quantum key distribution systems as mentioned in this paper, which achieves enhanced security by encoding information in photons such that an eavesdropper in the system can be detected.
Abstract: The first quantum technology that harnesses quantum mechanical effects for its core operation has arrived in the form of commercially available quantum key distribution systems. This technology achieves enhanced security by encoding information in photons such that an eavesdropper in the system can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, which promise exponentially greater computational power for particular tasks. Photonics is destined to have a central role in such technologies owing to the high-speed transmission and outstanding low-noise properties of photons. These technologies may use single photons, quantum states of bright laser beams or both, and will undoubtedly apply and drive state-of-the-art developments in photonics.

1,889 citations

Journal ArticleDOI
TL;DR: The theoretical and experimental status quo of this very active field of quantum repeater protocols is reviewed, and the potentials of different approaches are compared quantitatively, with a focus on the most immediate goal of outperforming the direct transmission of photons.
Abstract: The distribution of quantum states over long distances is limited by photon loss. Straightforward amplification as in classical telecommunications is not an option in quantum communication because of the no-cloning theorem. This problem could be overcome by implementing quantum repeater protocols, which create long-distance entanglement from shorter-distance entanglement via entanglement swapping. Such protocols require the capacity to create entanglement in a heralded fashion, to store it in quantum memories, and to swap it. One attractive general strategy for realizing quantum repeaters is based on the use of atomic ensembles as quantum memories, in combination with linear optical techniques and photon counting to perform all required operations. Here the theoretical and experimental status quo of this very active field are reviewed. The potentials of different approaches are compared quantitatively, with a focus on the most immediate goal of outperforming the direct transmission of photons.

1,603 citations