scispace - formally typeset
Search or ask a question
Author

Todd C. Mowry

Bio: Todd C. Mowry is an academic researcher from Carnegie Mellon University. The author has contributed to research in topics: Cache & Compiler. The author has an hindex of 49, co-authored 113 publications receiving 9137 citations. Previous affiliations of Todd C. Mowry include University of Toronto & Stanford University.


Papers
More filters
Proceedings ArticleDOI
01 Sep 1992
TL;DR: This paper proposes a compiler algorithm to insert prefetch instructions into code that operates on dense matrices, and shows that this algorithm significantly improves the execution speed of the benchmark programs-some of the programs improve by as much as a factor of two.
Abstract: Software-controlled data prefetching is a promising technique for improving the performance of the memory subsystem to match today’s high-performance processors. While prefctching is useful in hiding the latency, issuing prefetches incurs an instruction overhead and can increase the load on the memory subsystem. As a resu 1~ care must be taken to ensure that such overheads do not exceed the benefits. This paper proposes a compiler algorithm to insert prefetch instructions into code that operates on dense matrices. Our algorithm identiEes those references that are likely to be cache misses, and issues prefetches only for them. We have implemented our algorithm in the SUfF (Stanford University Intermediate Form) optimizing compiler. By generating fully functional code, we have been able to measure not only the improvements in cache miss rates, but also the oversdl performance of a simulated system. We show that our algorithm significantly improves the execution speed of our benchmark programs-some of the programs improve by as much as a factor of two. When compared to an algorithm that indiscriminately prefetches alf array accesses, our algorithm can eliminate many of the unnecessary prefetches without any significant decrease in the coverage of the cache misses.

789 citations

Proceedings ArticleDOI
14 Oct 2017
TL;DR: Ambit is proposed, an Accelerator-in-Memory for bulk bitwise operations that largely exploits existing DRAM structure, and hence incurs low cost on top of commodity DRAM designs (1% of DRAM chip area).
Abstract: Many important applications trigger bulk bitwise operations, i.e., bitwise operations on large bit vectors. In fact, recent works design techniques that exploit fast bulk bitwise operations to accelerate databases (bitmap indices, BitWeaving) and web search (BitFunnel). Unfortunately, in existing architectures, the throughput of bulk bitwise operations is limited by the memory bandwidth available to the processing unit (e.g., CPU, GPU, FPGA, processing-in-memory).To overcome this bottleneck, we propose Ambit, an Accelerator-in-Memory for bulk bitwise operations. Unlike prior works, Ambit exploits the analog operation of DRAM technology to perform bitwise operations completely inside DRAM, thereby exploiting the full internal DRAM bandwidth. Ambit consists of two components. First, simultaneous activation of three DRAM rows that share the same set of sense amplifiers enables the system to perform bitwise AND and OR operations. Second, with modest changes to the sense amplifier, the system can use the inverters present inside the sense amplifier to perform bitwise NOT operations. With these two components, Ambit can perform any bulk bitwise operation efficiently inside DRAM. Ambit largely exploits existing DRAM structure, and hence incurs low cost on top of commodity DRAM designs (1% of DRAM chip area). Importantly, Ambit uses the modern DRAM interface without any changes, and therefore it can be directly plugged onto the memory bus.Our extensive circuit simulations show that Ambit works as expected even in the presence of significant process variation. Averaged across seven bulk bitwise operations, Ambit improves performance by 32X and reduces energy consumption by 35X compared to state-of-the-art systems. When integrated with Hybrid Memory Cube (HMC), a 3D-stacked DRAM with a logic layer, Ambit improves performance of bulk bitwise operations by 9.7X compared to processing in the logic layer of the HMC. Ambit improves the performance of three real-world data-intensive applications, 1) database bitmap indices, 2) BitWeaving, a technique to accelerate database scans, and 3) bit-vector-based implementation of sets, by 3X-7X compared to a state-of-the-art baseline using SIMD optimizations. We describe four other applications that can benefit from Ambit, including a recent technique proposed to speed up web search. We believe that large performance and energy improvements provided by Ambit can enable other applications to use bulk bitwise operations.CCS CONCEPTS• Computer systems organization → Single instruction, multiple data; • Hardware → Hardware accelerator; • Hardware → Dynamic memory;

444 citations

Proceedings ArticleDOI
01 Sep 1996
TL;DR: It is demonstrated that compiler-inserted prefetching can significantly improve the execution speed of pointer-based codes---as much as 45% for the applications the authors study and can improve performance by as much as twofold.
Abstract: Software-controlled data prefetching offers the potential for bridging the ever-increasing speed gap between the memory subsystem and today's high-performance processors. While prefetching has enjoyed considerable success in array-based numeric codes, its potential in pointer-based applications has remained largely unexplored. This paper investigates compiler-based prefetching for pointer-based applications---in particular, those containing recursive data structures. We identify the fundamental problem in prefetching pointer-based data structures and propose a guideline for devising successful prefetching schemes. Based on this guideline, we design three prefetching schemes, we automate the most widely applicable scheme (greedy prefetching) in an optimizing research compiler, and we evaluate the performance of all three schemes on a modern superscalar processor similar to the MIPS R10000. Our results demonstrate that compiler-inserted prefetching can significantly improve the execution speed of pointer-based codes---as much as 45% for the applications we study. In addition, the more sophisticated algorithms (which we currently perform by hand, but which might be implemented in future compilers) can improve performance by as much as twofold. Compared with the only other compiler-based pointer prefetching scheme in the literature, our algorithms offer substantially better performance by avoiding unnecessary overhead and hiding more latency.

418 citations

Proceedings ArticleDOI
01 May 2000
TL;DR: This paper proposes and evaluates a design for supporting TLS that seamlessly scales to any machine size because it is a straightforward extension of writeback invalidation-based cache coherence (which itself scales both up and down).
Abstract: While architects understand how to build cost-effective parallel machines across a wide spectrum of machine sizes (ranging from within a single chip to large-scale servers), the real challenge is how to easily create parallel software to effectively exploit all of this raw performance potential. One promising technique for overcoming this problem is Thread-Level Speculation (TLS), which enables the compiler to optimistically create parallel threads despite uncertainty as to whether those threads are actually independent. In this paper, we propose and evaluate a design for supporting TLS that seamlessly scales to any machine size because it is a straightforward extension of writeback invalidation-based cache coherence (which itself scales both up and down). Our experimental results demonstrate that our scheme performs well on both single-chip multiprocessors and on larger-scale machines where communication latencies are twenty times larger.

401 citations

Proceedings ArticleDOI
31 Jan 1998
TL;DR: The potential for using thread-level data speculation (TLDS) to overcome this limitation by allowing the compiler to view parallelization solely as a cost/benefit tradeoff rather than something which is likely to violate program correctness is explored.
Abstract: As we look to the future, and the prospect of a billion transistors on a chip, it seems inevitable that microprocessors will exploit having multiple parallel threads. To achieve the full potential of these "single-chip multiprocessors", however, we must find a way to parallelize non-numeric applications. Unfortunately, compilers have had little success in parallelizing non-numeric codes due to their complex access patterns. This paper explores the potential for using thread-level data speculation (TLDS) to overcome this limitation by allowing the compiler to view parallelization solely as a cost/benefit tradeoff rather than something which is likely to violate program correctness. Our experimental results demonstrate that with realistic compiler support, TLDS can offer significant program speedups. We also demonstrate that through modest hardware extensions, a generic single-chip multiprocessor could support TLDS by augmenting its cache coherence scheme to detect dependence violations, and by using the primary data caches to buffer speculative state.

391 citations


Cited by
More filters
Proceedings ArticleDOI
11 May 2003
TL;DR: The random-pairwise keys scheme is presented, which perfectly preserves the secrecy of the rest of the network when any node is captured, and also enables node-to-node authentication and quorum-based revocation.
Abstract: Key establishment in sensor networks is a challenging problem because asymmetric key cryptosystems are unsuitable for use in resource constrained sensor nodes, and also because the nodes could be physically compromised by an adversary. We present three new mechanisms for key establishment using the framework of pre-distributing a random set of keys to each node. First, in the q-composite keys scheme, we trade off the unlikeliness of a large-scale network attack in order to significantly strengthen random key predistribution's strength against smaller-scale attacks. Second, in the multipath-reinforcement scheme, we show how to strengthen the security between any two nodes by leveraging the security of other links. Finally, we present the random-pairwise keys scheme, which perfectly preserves the secrecy of the rest of the network when any node is captured, and also enables node-to-node authentication and quorum-based revocation.

3,125 citations

Proceedings ArticleDOI
01 May 1995
TL;DR: Simultaneous multithreading has the potential to achieve 4 times the throughput of a superscalar, and double that of fine-grain multi-threading, and is an attractive alternative to single-chip multiprocessors.
Abstract: This paper examines simultaneous multithreading, a technique permitting several independent threads to issue instructions to a superscalar's multiple functional units in a single cycle. We present several models of simultaneous multithreading and compare them with alternative organizations: a wide superscalar, a fine-grain multithreaded processor, and single-chip, multiple-issue multiprocessing architectures. Our results show that both (single-threaded) superscalar and fine-grain multithreaded architectures are limited their ability to utilize the resources of a wide-issue processor. Simultaneous multithreading has the potential to achieve 4 times the throughput of a superscalar, and double that of fine-grain multithreading. We evaluate several cache configurations made possible by this type of organization and evaluate tradeoffs between them. We also show that simultaneous multithreading is an attractive alternative to single-chip multiprocessors; simultaneous multithreaded processors with a variety of organizations outperform corresponding conventional multiprocessors with similar execution resources.While simultaneous multithreading has excellent potential to increase processor utilization, it can add substantial complexity to the design. We examine many of these complexities and evaluate alternative organizations in the design space.

1,713 citations

Book
15 Aug 1998
TL;DR: This book explains the forces behind this convergence of shared-memory, message-passing, data parallel, and data-driven computing architectures and provides comprehensive discussions of parallel programming for high performance and of workload-driven evaluation, based on understanding hardware-software interactions.
Abstract: The most exciting development in parallel computer architecture is the convergence of traditionally disparate approaches on a common machine structure. This book explains the forces behind this convergence of shared-memory, message-passing, data parallel, and data-driven computing architectures. It then examines the design issues that are critical to all parallel architecture across the full range of modern design, covering data access, communication performance, coordination of cooperative work, and correct implementation of useful semantics. It not only describes the hardware and software techniques for addressing each of these issues but also explores how these techniques interact in the same system. Examining architecture from an application-driven perspective, it provides comprehensive discussions of parallel programming for high performance and of workload-driven evaluation, based on understanding hardware-software interactions. * synthesizes a decade of research and development for practicing engineers, graduate students, and researchers in parallel computer architecture, system software, and applications development * presents in-depth application case studies from computer graphics, computational science and engineering, and data mining to demonstrate sound quantitative evaluation of design trade-offs * describes the process of programming for performance, including both the architecture-independent and architecture-dependent aspects, with examples and case-studies * illustrates bus-based and network-based parallel systems with case studies of more than a dozen important commercial designs Table of Contents 1 Introduction 2 Parallel Programs 3 Programming for Performance 4 Workload-Driven Evaluation 5 Shared Memory Multiprocessors 6 Snoop-based Multiprocessor Design 7 Scalable Multiprocessors 8 Directory-based Cache Coherence 9 Hardware-Software Tradeoffs 10 Interconnection Network Design 11 Latency Tolerance 12 Future Directions APPENDIX A Parallel Benchmark Suites

1,571 citations

Journal ArticleDOI
01 Apr 2012
TL;DR: GraphLab as discussed by the authors extends the GraphLab framework to the substantially more challenging distributed setting while preserving strong data consistency guarantees to reduce network congestion and mitigate the effect of network latency in the shared-memory setting.
Abstract: While high-level data parallel frameworks, like MapReduce, simplify the design and implementation of large-scale data processing systems, they do not naturally or efficiently support many important data mining and machine learning algorithms and can lead to inefficient learning systems. To help fill this critical void, we introduced the GraphLab abstraction which naturally expresses asynchronous, dynamic, graph-parallel computation while ensuring data consistency and achieving a high degree of parallel performance in the shared-memory setting. In this paper, we extend the GraphLab framework to the substantially more challenging distributed setting while preserving strong data consistency guarantees.We develop graph based extensions to pipelined locking and data versioning to reduce network congestion and mitigate the effect of network latency. We also introduce fault tolerance to the GraphLab abstraction using the classic Chandy-Lamport snapshot algorithm and demonstrate how it can be easily implemented by exploiting the GraphLab abstraction itself. Finally, we evaluate our distributed implementation of the GraphLab abstraction on a large Amazon EC2 deployment and show 1-2 orders of magnitude performance gains over Hadoop-based implementations.

1,505 citations

Journal ArticleDOI
18 Jun 2016
TL;DR: This work proposes a novel PIM architecture, called PRIME, to accelerate NN applications in ReRAM based main memory, and distinguishes itself from prior work on NN acceleration, with significant performance improvement and energy saving.
Abstract: Processing-in-memory (PIM) is a promising solution to address the "memory wall" challenges for future computer systems. Prior proposed PIM architectures put additional computation logic in or near memory. The emerging metal-oxide resistive random access memory (ReRAM) has showed its potential to be used for main memory. Moreover, with its crossbar array structure, ReRAM can perform matrix-vector multiplication efficiently, and has been widely studied to accelerate neural network (NN) applications. In this work, we propose a novel PIM architecture, called PRIME, to accelerate NN applications in ReRAM based main memory. In PRIME, a portion of ReRAM crossbar arrays can be configured as accelerators for NN applications or as normal memory for a larger memory space. We provide microarchitecture and circuit designs to enable the morphable functions with an insignificant area overhead. We also design a software/hardware interface for software developers to implement various NNs on PRIME. Benefiting from both the PIM architecture and the efficiency of using ReRAM for NN computation, PRIME distinguishes itself from prior work on NN acceleration, with significant performance improvement and energy saving. Our experimental results show that, compared with a state-of-the-art neural processing unit design, PRIME improves the performance by ~2360× and the energy consumption by ~895×, across the evaluated machine learning benchmarks.

1,197 citations