scispace - formally typeset
Search or ask a question
Author

Todd R. Golub

Bio: Todd R. Golub is an academic researcher from Harvard University. The author has contributed to research in topics: Cancer & Gene expression profiling. The author has an hindex of 164, co-authored 422 publications receiving 201457 citations. Previous affiliations of Todd R. Golub include Rush University Medical Center & Boston Children's Hospital.


Papers
More filters
Journal ArticleDOI
Rameen Beroukhim, Craig H. Mermel1, Craig H. Mermel2, Dale Porter3, Guo Wei1, Soumya Raychaudhuri4, Soumya Raychaudhuri1, Jerry Donovan3, Jordi Barretina2, Jordi Barretina1, Jesse S. Boehm1, Jennifer Dobson1, Jennifer Dobson2, Mitsuyoshi Urashima5, Kevin T. Mc Henry3, Reid M. Pinchback1, Azra H. Ligon4, Yoon Jae Cho6, Leila Haery1, Leila Haery2, Heidi Greulich, Michael R. Reich1, Wendy Winckler1, Michael S. Lawrence1, Barbara A. Weir2, Barbara A. Weir1, Kumiko E. Tanaka2, Kumiko E. Tanaka1, Derek Y. Chiang2, Derek Y. Chiang7, Derek Y. Chiang1, Adam J. Bass4, Adam J. Bass1, Adam J. Bass2, Alice Loo3, Carter Hoffman1, Carter Hoffman2, John R. Prensner1, John R. Prensner2, Ted Liefeld1, Qing Gao1, Derek Yecies2, Sabina Signoretti2, Sabina Signoretti4, Elizabeth A. Maher8, Frederic J. Kaye, Hidefumi Sasaki9, Joel E. Tepper7, Jonathan A. Fletcher4, Josep Tabernero10, José Baselga10, Ming-Sound Tsao11, Francesca Demichelis12, Mark A. Rubin12, Pasi A. Jänne4, Pasi A. Jänne2, Mark J. Daly1, Mark J. Daly2, Carmelo Nucera13, Ross L. Levine14, Benjamin L. Ebert2, Benjamin L. Ebert1, Benjamin L. Ebert4, Stacey Gabriel1, Anil K. Rustgi15, Cristina R. Antonescu14, Marc Ladanyi14, Anthony Letai2, Levi A. Garraway1, Levi A. Garraway2, Massimo Loda2, Massimo Loda4, David G. Beer16, Lawrence D. True17, Aikou Okamoto5, Scott L. Pomeroy6, Samuel Singer14, Todd R. Golub2, Todd R. Golub1, Todd R. Golub18, Eric S. Lander2, Eric S. Lander1, Eric S. Lander19, Gad Getz1, William R. Sellers3, Matthew Meyerson1, Matthew Meyerson2 
18 Feb 2010-Nature
TL;DR: It is demonstrated that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival, and a large majority of SCNAs identified in individual cancer types are present in several cancer types.
Abstract: A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-kappaBeta pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.

3,375 citations

Journal ArticleDOI
TL;DR: In this article, the application of self-organizing maps, a type of mathematical cluster analysis that is particularly well suited for recognizing and classifying features in complex, multidi-mensional data, is described.
Abstract: Array technologies have made it straightfor- ward to monitor simultaneously the expression pattern of thousands of genes. The challenge now is to interpret such massive data sets. The first step is to extract the fundamental patterns of gene expression inherent in the data. This paper describes the application of self-organizing maps, a type of mathematical cluster analysis that is particularly well suited for recognizing and classifying features in complex, multidi- mensional data. The method has been implemented in a publicly available computer package, GENECLUSTER, that per- forms the analytical calculations and provides easy data visualization. To illustrate the value of such analysis, the approach is applied to hematopoietic differentiation in four well studied models (HL-60, U937, Jurkat, and NB4 cells). Expression patterns of some 6,000 human genes were assayed, and an online database was created. GENECLUSTER was used to organize the genes into biologically relevant clusters that suggest novel hypotheses about hematopoietic differentia- tion—for example, highlighting certain genes and pathways involved in ''differentiation therapy'' used in the treatment of acute promyelocytic leukemia.

3,186 citations

Journal ArticleDOI
TL;DR: The results support the notion that the clinical behavior of prostate cancer is linked to underlying gene expression differences that are detectable at the time of diagnosis.

2,574 citations

Journal ArticleDOI
23 Jan 2014-Nature
TL;DR: It is found that large-scale genomic analysis can identify nearly all known cancer genes in these cancer types and 33 genes that were not previously known to be significantly mutated in cancer, including genes related to proliferation, apoptosis, genome stability, chromatin regulation, immune evasion, RNA processing and protein homeostasis.
Abstract: Although a few cancer genes are mutated in a high proportion of tumours of a given type (.20%), most are mutated at intermediate frequencies (2–20%). To explore the feasibility of creating a comprehensive catalogue of cancer genes, we analysed somatic point mutations in exome sequences from 4,742 human cancers and their matched normal-tissue samples across 21 cancer types. We found that large-scale genomic analysis can identify nearly all known cancer genes in these tumour types. Our analysis also identified 33 genes that were not previously known to be significantly mutated in cancer, including genes related to proliferation, apoptosis, genome stability, chromatin regulation, immune evasion, RNA processing and protein homeostasis. Down-sampling analysis indicates that larger sample sizes will reveal many more genes mutated at clinically important frequencies. We estimate that near-saturation may be achieved with 600– 5,000 samples per tumour type, depending on background mutation frequency. The results may help to guide the next stage of cancer genomics. Comprehensive knowledge of the genes underlying human cancers is a critical foundation for cancer diagnostics, therapeutics, clinical-trial design and selection of rational combination therapies. It is now possible to use genomic analysis to identify cancer genes in an unbiased fashion, based on the presence of somatic mutations at a rate significantly higher than the expected background level. Systematic studies have revealed many new cancer genes, as well as new classes of cancer genes 1,2 . They have also made clear that, although some cancer genes are mutated at high frequencies, most cancer genes in most patients occur at intermediate frequencies (2–20%) or lower. Accordingly, a complete catalogue of mutations in this frequency class will be essential for recognizing dysregulated pathways and optimal targets for therapeutic intervention. However, recent work suggests major gaps in our knowledge of cancer genes of intermediate frequency. For example, a study of 183 lung adenocarcinomas 3 found that 15% of patients lacked even a single mutation affecting any of the 10 known hallmarks of cancer, and 38% had 3 or fewer such mutations. In this paper, we analysed somatic point mutations (substitutions and small insertion and deletions) in nearly 5,000 human cancers and their matched normal-tissue samples (‘tumour–normal pairs’) across 21 tumour types. The questions that we examine here are: first, whether large-scale genomic analysis across tumour types can reliably identify all known cancer genes; second, whether it will reveal many new candidate cancer genes; and third, how far we are from having a complete catalogue of cancer genes (at least those of intermediate frequency). We used rigorous statistical methods to enumerate candidate cancer genes and then carefully inspected each gene to identify those with strong biological connections to cancer and mutational patterns consistent with the expected function. The analysis reveals nearly all known cancer genes and revealed 33 novel candidates, including genes related to proliferation, apoptosis, genome stability, chromatin regulation, immune evasion, RNA processing and protein homeostasis. Importantly, the data show that the

2,565 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
TL;DR: The Gene Set Enrichment Analysis (GSEA) method as discussed by the authors focuses on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation.
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

34,830 citations

Journal ArticleDOI
TL;DR: Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.
Abstract: Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.

32,980 citations

Journal ArticleDOI
TL;DR: By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.
Abstract: DAVID bioinformatics resources consists of an integrated biological knowledgebase and analytic tools aimed at systematically extracting biological meaning from large gene/protein lists. This protocol explains how to use DAVID, a high-throughput and integrated data-mining environment, to analyze gene lists derived from high-throughput genomic experiments. The procedure first requires uploading a gene list containing any number of common gene identifiers followed by analysis using one or more text and pathway-mining tools such as gene functional classification, functional annotation chart or clustering and functional annotation table. By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.

31,015 citations

Journal ArticleDOI
TL;DR: The philosophy and design of the limma package is reviewed, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
Abstract: limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.

22,147 citations