scispace - formally typeset
Search or ask a question
Author

Todd R. Golub

Bio: Todd R. Golub is an academic researcher from Harvard University. The author has contributed to research in topics: Cancer & Gene expression profiling. The author has an hindex of 164, co-authored 422 publications receiving 201457 citations. Previous affiliations of Todd R. Golub include Rush University Medical Center & Boston Children's Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: A computational model, validated in vivo, indicated that high BCL-xL expression confers resistance to MCL1 repression, thereby identifying a patient-selection strategy for the clinical development of M CL1 inhibitors.

160 citations

Journal ArticleDOI
09 Dec 2020-Nature
TL;DR: An in vivo barcoding strategy capable of determining the metastatic potential of human cancer cell lines in mouse xenografts at scale is introduced and a first-generation metastasis map is created that reveals organ-specific patterns of metastasis, enabling these patterns to be associated with clinical and genomic features.
Abstract: Most deaths from cancer are explained by metastasis, and yet large-scale metastasis research has been impractical owing to the complexity of in vivo models. Here we introduce an in vivo barcoding strategy that is capable of determining the metastatic potential of human cancer cell lines in mouse xenografts at scale. We validated the robustness, scalability and reproducibility of the method and applied it to 500 cell lines1,2 spanning 21 types of solid tumour. We created a first-generation metastasis map (MetMap) that reveals organ-specific patterns of metastasis, enabling these patterns to be associated with clinical and genomic features. We demonstrate the utility of MetMap by investigating the molecular basis of breast cancers capable of metastasizing to the brain—a principal cause of death in patients with this type of cancer. Breast cancers capable of metastasizing to the brain showed evidence of altered lipid metabolism. Perturbation of lipid metabolism in these cells curbed brain metastasis development, suggesting a therapeutic strategy to combat the disease and demonstrating the utility of MetMap as a resource to support metastasis research. A method in which pooled barcoded human cancer cell lines are injected into a mouse xenograft model enables simultaneous mapping of the metastatic potential of multiple cell lines, and shows that breast cancer cells that metastasize to the brain have altered lipid metabolism.

156 citations

Journal ArticleDOI
TL;DR: The expression signature and the genes identified may improve the understanding of the de-differentiation process of prostate tumors and have clinical applications among men with Gleason 7 by further estimating their risk of lethal prostate cancer and thereby guiding therapy decisions to improve outcomes and reduce overtreatment.
Abstract: Purpose Prostate-specific antigen screening has led to enormous overtreatment of prostate cancer because of the inability to distinguish potentially lethal disease at diagnosis. We reasoned that by identifying an mRNA signature of Gleason grade, the best predictor of prognosis, we could improve prediction of lethal disease among men with moderate Gleason 7 tumors, the most common grade, and the most indeterminate in terms of prognosis. Patients and Methods Using the complementary DNA–mediated annealing, selection, extension, and ligation assay, we measured the mRNA expression of 6,100 genes in prostate tumor tissue in the Swedish Watchful Waiting cohort (n 358) and Physicians’ Health Study (PHS; n 109). We developed an mRNA signature of Gleason grade comparing individuals with Gleason 6 to those with Gleason 8 tumors and applied the model among patients with Gleason 7 to discriminate lethal cases. Results We built a 157-gene signature using the Swedish data that predicted Gleason with low misclassification (area under the curve [AUC] 0.91); when this signature was tested in the PHS, the discriminatory ability remained high (AUC 0.94). In men with Gleason 7 tumors, who were excluded from the model building, the signature significantly improved the prediction of lethal disease beyond knowing whether the Gleason score was 4 3o r 3 4 (P .006).

152 citations

Rameen Beroukhim, Craig H. Mermel1, Craig H. Mermel2, Dale Porter3, Guo Wei2, Soumya Raychaudhuri4, Soumya Raychaudhuri2, Jerry Donovan3, Jordi Barretina1, Jordi Barretina2, Jesse S. Boehm2, Jennifer Dobson1, Jennifer Dobson2, Mitsuyoshi Urashima5, Kevin T. Mc Henry3, Reid M. Pinchback2, Azra H. Ligon4, Yoon Jae Cho6, Leila Haery2, Leila Haery1, Heidi Greulich, Michael R. Reich2, Wendy Winckler2, Michael S. Lawrence2, Barbara A. Weir1, Barbara A. Weir2, Kumiko E. Tanaka2, Kumiko E. Tanaka1, Derek Y. Chiang7, Derek Y. Chiang2, Derek Y. Chiang1, Adam J. Bass2, Adam J. Bass4, Adam J. Bass1, Alice Loo3, Carter Hoffman1, Carter Hoffman2, John R. Prensner2, John R. Prensner1, Ted Liefeld2, Qing Gao2, Derek Yecies1, Sabina Signoretti1, Sabina Signoretti4, Elizabeth A. Maher8, Frederic J. Kaye, Hidefumi Sasaki9, Joel E. Tepper7, Jonathan A. Fletcher4, Josep Tabernero10, José Baselga10, Ming-Sound Tsao11, Francesca Demichelis12, Mark A. Rubin12, Pasi A. Jänne1, Pasi A. Jänne4, Mark J. Daly2, Mark J. Daly1, Carmelo Nucera13, Ross L. Levine14, Benjamin L. Ebert2, Benjamin L. Ebert1, Benjamin L. Ebert4, Stacey Gabriel2, Anil K. Rustgi15, Cristina R. Antonescu14, Marc Ladanyi14, Anthony Letai1, Levi A. Garraway1, Levi A. Garraway2, Massimo Loda4, Massimo Loda1, David G. Beer16, Lawrence D. True17, Aikou Okamoto5, Scott L. Pomeroy6, Samuel Singer14, Todd R. Golub18, Todd R. Golub2, Todd R. Golub1, Eric S. Lander2, Eric S. Lander19, Eric S. Lander1, Gad Getz2, William R. Sellers3, Matthew Meyerson1, Matthew Meyerson2 
01 Feb 2010
TL;DR: In this paper, the authors identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions.
Abstract: A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-kappaBeta pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.

149 citations

Journal ArticleDOI
TL;DR: The causes and consequences of intra-tumour genomic heterogeneity and instability in commonly used models and implications thereof are discussed and strategies to cope with such genomic evolution are discussed.
Abstract: Cancer research relies on model systems, which reflect the biology of actual human tumours to only a certain extent. One important feature of human cancer is its intra-tumour genomic heterogeneity and instability. However, the extent of such genomic instability in cancer models has received limited attention in research. Here, we review the state of knowledge of genomic instability of cancer models and discuss its biological origins and implications for basic research and for cancer precision medicine. We discuss strategies to cope with such genomic evolution and evaluate both the perils and the emerging opportunities associated with it.

148 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
TL;DR: The Gene Set Enrichment Analysis (GSEA) method as discussed by the authors focuses on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation.
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

34,830 citations

Journal ArticleDOI
TL;DR: Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.
Abstract: Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.

32,980 citations

Journal ArticleDOI
TL;DR: By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.
Abstract: DAVID bioinformatics resources consists of an integrated biological knowledgebase and analytic tools aimed at systematically extracting biological meaning from large gene/protein lists. This protocol explains how to use DAVID, a high-throughput and integrated data-mining environment, to analyze gene lists derived from high-throughput genomic experiments. The procedure first requires uploading a gene list containing any number of common gene identifiers followed by analysis using one or more text and pathway-mining tools such as gene functional classification, functional annotation chart or clustering and functional annotation table. By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.

31,015 citations

Journal ArticleDOI
TL;DR: The philosophy and design of the limma package is reviewed, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
Abstract: limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.

22,147 citations