scispace - formally typeset
Search or ask a question
Author

Todd R. Golub

Bio: Todd R. Golub is an academic researcher from Harvard University. The author has contributed to research in topics: Cancer & Gene expression profiling. The author has an hindex of 164, co-authored 422 publications receiving 201457 citations. Previous affiliations of Todd R. Golub include Rush University Medical Center & Boston Children's Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: CDK2/4 inhibition statistically significantly augmented the effects of BRAFV600E- or MEK-inhibitors on melanoma cell viability in vitro and growth in athymic nude Foxn1 nu mice.
Abstract: V600E inhibitors, we used hTERT/CDK4R24C/p53DD- immortalized primary human melanocytes genetically modified to ectopically express BRAFV600E or NRASG12D and observed induction of the AP-1 transcription factor family member c-Jun. Using a dominant negative approach, in vitro cell proliferation assays, western blots, and flow cytometry showed that MAPK signaling via BRAF V600E

35 citations

Book ChapterDOI
TL;DR: Cloning of chromosome translocation breakpoints have identified abnormal gene products which contribute to the pathogenesis of hematologic malignancy.
Abstract: Cloning of chromosome translocation breakpoints have identified abnormal gene products which contribute to the pathogenesis of hematologic malignancy. Examples include the PML-RARα fusion associated with t(15; 17) acute promyelocytic leukemia (APML)(1’3), the AMLl-ETO fusion associated with t(8;21) acute myeloid leukemia (4), the CBFβ-MYHII fusion associated with inv(16) acute myelomonocytic leukemia and eosinophilia (5), and MLL fusions at 11q23 breakpoints with various fusion proteins associated with acute myeloid leukemias (6).

35 citations

Posted ContentDOI
08 Jun 2017-bioRxiv
TL;DR: This work shows that mitigating off-target effects is feasible in these datasets via computational methodologies to produce a Consensus Gene Signature (CGS), and compares RNAi technology to clustered regularly interspaced short palindromic repeat (CRISPR)-based knockout by analysis of 373 sgRNAs in 6 cells lines, and shows that the on-target efficacies are comparable.
Abstract: The application of RNA interference (RNAi) to mammalian cells has provided the means to perform phenotypic screens to determine the functions of genes. Although RNAi has revolutionized loss of function genetic experiments, it has been difficult to systematically assess the prevalence and consequences of off-target effects. The Connectivity Map (CMAP) represents an unprecedented resource to study the gene expression consequences of expressing short hairpin RNAs (shRNAs). Analysis of signatures for over 13,000 shRNAs applied in 9 cell lines revealed that miRNA-like off-target effects of RNAi are far stronger and more pervasive than generally appreciated. We show that mitigating off-target effects is feasible in these datasets via computational methodologies to produce a Consensus Gene Signature (CGS). In addition, we compared RNAi technology to clustered regularly interspaced short palindromic repeat (CRISPR)-based knockout by analysis of 373 sgRNAs in 6 cells lines, and show that the on-target efficacies are comparable, but CRISPR technology is far less susceptible to systematic off-target effects. These results will help guide the proper use and analysis of loss-of-function reagents for the determination of gene function.

35 citations

Journal ArticleDOI
TL;DR: In this paper, the authors defined molecular features in human tumor cells that determine their degree of sensitivity to human allogeneic natural killer (NK) cells, and quantified the NK cell responsiveness of hundreds of molecularly annotated "DNA-barcoded" solid tumor cell lines in multiplexed format.
Abstract: To systematically define molecular features in human tumor cells that determine their degree of sensitivity to human allogeneic natural killer (NK) cells, we quantified the NK cell responsiveness of hundreds of molecularly annotated ‘DNA-barcoded’ solid tumor cell lines in multiplexed format and applied genome-scale CRISPR-based gene-editing screens in several solid tumor cell lines, to functionally interrogate which genes in tumor cells regulate the response to NK cells. In these orthogonal studies, NK cell–sensitive tumor cells tend to exhibit ‘mesenchymal-like’ transcriptional programs; high transcriptional signature for chromatin remodeling complexes; high levels of B7-H6 (NCR3LG1); and low levels of HLA-E/antigen presentation genes. Importantly, transcriptional signatures of NK cell–sensitive tumor cells correlate with immune checkpoint inhibitor (ICI) resistance in clinical samples. This study provides a comprehensive map of mechanisms regulating tumor cell responses to NK cells, with implications for future biomarker-driven applications of NK cell immunotherapies. The use of natural killer (NK) cells in immunotherapy as an alternative to allogeneic T cells is gaining ground. Here, two genome-scale high-throughput platforms are used to identify genes that modulate the sensitivity of multiple solid tumor cell lines to NK-mediated killing.

34 citations

Posted Content
TL;DR: In this article, the authors reverse engineered ceRNA networks (ceRNETs) in breast and prostate adenocarcinomas using context-specific TCGA profiles, and tested whether ceRNA interactions can predict the effects of RNAi-mediated gene silencing perturbations in PC3 and MCF7 cells.
Abstract: Background: MicroRNAs (miRNAs) play multiple roles in tumor biology [1]. Interestingly, reports from multiple groups suggest that miRNA targets may be coupled through competitive stoichiometric sequestration [2]. Specifically, computational models predicted [3, 4] and experimental assays confirmed [5, 6] that miRNA activity is dependent on miRNA target abundance, and consequently, changes to the abundance of some miRNA targets lead to changes to the regulation and abundance of their other targets. The resulting indirect regulatory influence between miRNA targets resembles competition and has been dubbed competitive endogenous RNA (ceRNA) [5, 7, 8]. Recent studies have questioned the physiological relevance of ceRNA interactions [9], researchers ability to accurately predict these interactions [10], and the number of genes that are impacted by ceRNA interactions in specific cellular contexts [11]. Results: To address these concerns, we reverse engineered ceRNA networks (ceRNETs) in breast and prostate adenocarcinomas using context-specific TCGA profiles [12-14], and tested whether ceRNA interactions can predict the effects of RNAi-mediated gene silencing perturbations in PC3 and MCF7 cells. Our results, based on tests of thousands of inferred ceRNA interactions that are predicted to alter hundreds of cancer genes in each of the two tumor contexts, confirmed statistically significant effects for half of the predicted targets. Conclusions: Our results suggest that the expression of a significant fraction of cancer genes may be regulated by ceRNA interactions in each of the two tumor contexts.

32 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
TL;DR: The Gene Set Enrichment Analysis (GSEA) method as discussed by the authors focuses on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation.
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

34,830 citations

Journal ArticleDOI
TL;DR: Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.
Abstract: Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.

32,980 citations

Journal ArticleDOI
TL;DR: By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.
Abstract: DAVID bioinformatics resources consists of an integrated biological knowledgebase and analytic tools aimed at systematically extracting biological meaning from large gene/protein lists. This protocol explains how to use DAVID, a high-throughput and integrated data-mining environment, to analyze gene lists derived from high-throughput genomic experiments. The procedure first requires uploading a gene list containing any number of common gene identifiers followed by analysis using one or more text and pathway-mining tools such as gene functional classification, functional annotation chart or clustering and functional annotation table. By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.

31,015 citations

Journal ArticleDOI
TL;DR: The philosophy and design of the limma package is reviewed, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
Abstract: limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.

22,147 citations