scispace - formally typeset
Search or ask a question
Author

Todd S. Braver

Bio: Todd S. Braver is an academic researcher from Washington University in St. Louis. The author has contributed to research in topics: Cognition & Working memory. The author has an hindex of 89, co-authored 227 publications receiving 42856 citations. Previous affiliations of Todd S. Braver include University of Washington & University of Cambridge.


Papers
More filters
Journal ArticleDOI
TL;DR: Two computational modeling studies are reported, serving to articulate the conflict monitoring hypothesis and examine its implications, including a feedback loop connecting conflict monitoring to cognitive control, and a number of important behavioral phenomena.
Abstract: A neglected question regarding cognitive control is how control processes might detect situations calling for their involvement. The authors propose here that the demand for control may be evaluated in part by monitoring for conflicts in information processing. This hypothesis is supported by data concerning the anterior cingulate cortex, a brain area involved in cognitive control, which also appears to respond to the occurrence of conflict. The present article reports two computational modeling studies, serving to articulate the conflict monitoring hypothesis and examine its implications. The first study tests the sufficiency of the hypothesis to account for brain activation data, applying a measure of conflict to existing models of tasks shown to engage the anterior cingulate. The second study implements a feedback loop connecting conflict monitoring to cognitive control, using this to simulate a number of important behavioral phenomena.

6,385 citations

Journal ArticleDOI
01 May 1998-Science
TL;DR: Results confirm that this region shows activity during erroneous responses, but activity was also observed in the same region during correct responses under conditions of increased response competition, which suggests that the ACC detects conditions under which errors are likely to occur rather than errors themselves.
Abstract: An unresolved question in neuroscience and psychology is how the brain monitors performance to regulate behavior. It has been proposed that the anterior cingulate cortex (ACC), on the medial surface of the frontal lobe, contributes to performance monitoring by detecting errors. In this study, event-related functional magnetic resonance imaging was used to examine ACC function. Results confirm that this region shows activity during erroneous responses. However, activity was also observed in the same region during correct responses under conditions of increased response competition. This suggests that the ACC detects conditions under which errors are likely to occur rather than errors themselves.

3,236 citations

Journal ArticleDOI
10 Apr 1997-Nature
TL;DR: Functional magnetic resonance imaging is used to examine brain activation in human subjects during performance of a working memory task and to show that prefrontal cortex along with parietal cortex appears to play a role in active maintenance.
Abstract: Working memory is responsible for the short-term storage and online manipulation of information necessary for higher cognitive functions, such as language, planning and problem-solving. Traditionally, working memory has been divided into two types of processes: executive control (governing the encoding manipulation and retrieval of information in working memory) and active maintenance (keeping information available 'online'). It has also been proposed that these two types of processes may be subserved by distinct cortical structures, with the prefrontal cortex housing the executive control processes, and more posterior regions housing the content-specific buffers (for example verbal versus visuospatial) responsible for active maintenance. However, studies in non-human primates suggest that dorsolateral regions of the prefrontal cortex may also be involved in active maintenance. We have used functional magnetic resonance imaging to examine brain activation in human subjects during performance of a working memory task. We used the temporal resolution of this technique to examine the dynamics of regional activation, and to show that prefrontal cortex along with parietal cortex appears to play a role in active maintenance.

1,824 citations

Journal ArticleDOI
TL;DR: Recent research is summarized that demonstrates how the DMC framework provides a coherent explanation of three sources of cognitive control variation - intra-individual, inter-individual and between-groups - in terms of proactive versus reactive control biases.

1,742 citations

Journal ArticleDOI
TL;DR: Functional magnetic resonance imaging is used to probe PFC activity during a sequential letter task in which memory load was varied in an incremental fashion, providing a "dose-response curve" describing the involvement of both PFC and related brain regions in WM function.

1,609 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The results suggest that it is important to recognize both the unity and diversity ofExecutive functions and that latent variable analysis is a useful approach to studying the organization and roles of executive functions.

12,182 citations

Journal ArticleDOI
TL;DR: Evidence for partially segregated networks of brain areas that carry out different attentional functions is reviewed, finding that one system is involved in preparing and applying goal-directed selection for stimuli and responses, and the other is specialized for the detection of behaviourally relevant stimuli.
Abstract: We review evidence for partially segregated networks of brain areas that carry out different attentional functions. One system, which includes parts of the intraparietal cortex and superior frontal cortex, is involved in preparing and applying goal-directed (top-down) selection for stimuli and responses. This system is also modulated by the detection of stimuli. The other system, which includes the temporoparietal cortex and inferior frontal cortex, and is largely lateralized to the right hemisphere, is not involved in top-down selection. Instead, this system is specialized for the detection of behaviourally relevant stimuli, particularly when they are salient or unexpected. This ventral frontoparietal network works as a 'circuit breaker' for the dorsal system, directing attention to salient events. Both attentional systems interact during normal vision, and both are disrupted in unilateral spatial neglect.

10,985 citations

Journal ArticleDOI
TL;DR: It is proposed that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them, which provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task.
Abstract: ▪ Abstract The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them. They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task. We review neurophysiological, neurobiological, neuroimaging, and computational studies that support this theory and discuss its implications as well as further issues to be addressed

10,943 citations

Book ChapterDOI
TL;DR: This chapter demonstrates the functional importance of dopamine to working memory function in several ways and demonstrates that a network of brain regions, including the prefrontal cortex, is critical for the active maintenance of internal representations.
Abstract: Publisher Summary This chapter focuses on the modern notion of short-term memory, called working memory. Working memory refers to the temporary maintenance of information that was just experienced or just retrieved from long-term memory but no longer exists in the external environment. These internal representations are short-lived, but can be maintained for longer periods of time through active rehearsal strategies, and can be subjected to various operations that manipulate the information in such a way that makes it useful for goal-directed behavior. Working memory is a system that is critically important in cognition and seems necessary in the course of performing many other cognitive functions, such as reasoning, language comprehension, planning, and spatial processing. This chapter demonstrates the functional importance of dopamine to working memory function in several ways. Elucidation of the cognitive and neural mechanisms underlying human working memory is an important focus of cognitive neuroscience and neurology for much of the past decade. One conclusion that arises from research is that working memory, a faculty that enables temporary storage and manipulation of information in the service of behavioral goals, can be viewed as neither a unitary, nor a dedicated system. Data from numerous neuropsychological and neurophysiological studies in animals and humans demonstrates that a network of brain regions, including the prefrontal cortex, is critical for the active maintenance of internal representations.

10,081 citations