scispace - formally typeset
Search or ask a question
Author

Tom A. R. Price

Bio: Tom A. R. Price is an academic researcher from University of Liverpool. The author has contributed to research in topics: Drosophila pseudoobscura & Population. The author has an hindex of 19, co-authored 68 publications receiving 1425 citations. Previous affiliations of Tom A. R. Price include Okayama University & Duke University.


Papers
More filters
Journal ArticleDOI
TL;DR: Current knowledge of how natural drive systems function, how drivers spread through natural populations, and the factors that limit their invasion are reviewed.
Abstract: Meiotic drivers are genetic variants that selfishly manipulate the production of gametes to increase their own rate of transmission, often to the detriment of the rest of the genome and the individual that carries them. This genomic conflict potentially occurs whenever a diploid organism produces a haploid stage, and can have profound evolutionary impacts on gametogenesis, fertility, individual behaviour, mating system, population survival, and reproductive isolation. Multiple research teams are developing artificial drive systems for pest control, utilising the transmission advantage of drive to alter or exterminate target species. Here, we review current knowledge of how natural drive systems function, how drivers spread through natural populations, and the factors that limit their invasion.

286 citations

Journal ArticleDOI
TL;DR: It is argued that studies examining the ecological and evolutionary impacts of climate change should consider the 'thermal fertility limit' (TFL) of species; and a framework for the design of TFL studies across taxa be developed.
Abstract: Rising global temperatures are threatening biodiversity. Studies on the impact of temperature on natural populations usually use lethal or viability thresholds, termed the ‘critical thermal limit’ (CTL). However, this overlooks important sublethal impacts of temperature that could affect species’ persistence. Here we discuss a critical but overlooked trait: fertility, which can deteriorate at temperatures less severe than an organism’s lethal limit. We argue that studies examining the ecological and evolutionary impacts of climate change should consider the ‘thermal fertility limit’ (TFL) of species; we propose that a framework for the design of TFL studies across taxa be developed. Given the importance of fertility for population persistence, understanding how climate change affects TFLs is vital for the assessment of future biodiversity impacts.

170 citations

Journal ArticleDOI
21 Nov 2008-Science
TL;DR: It is shown that female Drosophila pseudoobscura evolved increased remating rates when exposed to the risk of mating with males carrying a deleterious sex ratio–distorting gene that also reduces sperm competitive ability.
Abstract: It is unknown why females mate with multiple males when mating is frequently costly and a single copulation often provides enough sperm to fertilize all a female's eggs. One possibility is that remating increases the fitness of offspring, because fertilization success is biased toward the sperm of high-fitness males. We show that female Drosophila pseudoobscura evolved increased remating rates when exposed to the risk of mating with males carrying a deleterious sex ratio-distorting gene that also reduces sperm competitive ability. Because selfish genetic elements that reduce sperm competitive ability are generally associated with low genetic fitness, they may represent a common driver of the evolution of polyandry.

112 citations

Journal ArticleDOI
08 Mar 2008-Genetica
TL;DR: The widespread reduction in male fertility caused by SGEs implies polyandry may be a successful female strategy to bias paternity against SGE-carrying males, and there is widespread evidence that S GEs are associated with reduced fertility in both animals and plants.
Abstract: Females of many species mate with more than one male (polyandry), yet the adaptive significance of polyandry is poorly understood. One hypothesis to explain the widespread occurrence of multiple mating is that it may allow females to utilize post-copulatory mechanisms to reduce the risk of fertilizing their eggs with sperm from incompatible males. Selfish genetic elements (SGEs) are ubiquitous in eukaryotes, frequent sources of reproductive incompatibilities, and associated with fitness costs. However, their impact on sexual selection is largely unexplored. In this review we examine the link between SGEs, male fertility and sperm competitive ability. We show there is widespread evidence that SGEs are associated with reduced fertility in both animals and plants, and present some recent data showing that males carrying SGEs have reduced paternity in sperm competition. We also discuss possible reasons why male gametes are particularly vulnerable to the selfish actions of SGEs. The widespread reduction in male fertility caused by SGEs implies polyandry may be a successful female strategy to bias paternity against SGE-carrying males.

89 citations

Journal ArticleDOI
TL;DR: It is demonstrated that mating with multiple males protects populations of the fruit fly Drosophila pseudoobscura against extinction caused by a "selfish" sex-ratio-distorting element and it is shown that female remating behavior can determine the frequency of sex-Ratio distorters in populations.

71 citations


Cited by
More filters
DOI
18 Feb 2015

1,457 citations

Journal ArticleDOI
A Grant1
28 Oct 2002-Heredity
TL;DR: An excellent review of life history theory, which integrates this well with results from the empirical literature, and gives an invaluable route into the literature, with a bibliography of 1600 or so items.
Abstract: Life history biology sits on the interface between genetics and ecology, and both have made important theoretical and empirical contributions to our understanding. However, the connections between the disciplines have not always been as close as they might have been and this book takes some useful steps towards remedying this. It gives an excellent review of life history theory, and integrates this well with results from the empirical literature. After an 11-page introduction, Roff sets out ‘a framework for analysis’ in which he covers the necessary elements of quantitative and population genetics. This includes clear definitions of fitness in a range of circumstances, from density independent populations in constant environments through to the more complex situations of density and frequency dependence and environments that are spatially or temporally stochastic. Trade-offs are then examined, including a valuable analysis of potential pitfalls in studying them and ways that these can be avoided. The author then deals in turn with evolution in constant environments; stochastic environments and ‘predictable environments’. The last of these covers situations where there is environmental variation, but at least some information is available to allow individuals to make an adaptive response. The final chapter identifies 20 topics for future study. Some will find the book too dominated by theory. Others (but probably not readers of Heredity!) will find it contains too much genetics. But Roff does an excellent job of making the theory accessible, covering the essential issues and pointing to original sources for the details. Theory is related to a significant number of empirical studies, although there is room for another book reviewing the empirical literature on life histories in detail, and Roff’s book would provide a robust skeleton on which to hang this. To make my own assessment, I examined in detail Roff’s discussion of the question of fitness measures for density dependent populations in stochastic environments – an area in which I have been involved. I could not fault him – all the key references were there and the issues were made very clear without the more esoteric mathematics. I also examined some areas that I was less familiar with, and again the text was clear and easy to read. My only real criticism of the book would be that its very long chapters (more than 130 pages in one case) makes it difficult to find things. It would have been simple to address this by including the section headings on the contents pages. A minor personal quibble would be that the book usually expresses problems in terms of the intrinsic rate of increase, r, and the characteristic (Lotka) equation. A matrix formulation is often more tractable and is easier to generalise to density dependent populations and stochastic environments, so expanding on the relationship between the two would have been useful. But overall this is an excellent book. It brings together the key theory in a single place. It gives an invaluable route into the literature, with a bibliography of 1600 or so items. These features, and its identification of topics that need further study should make an important contribution to moving the field forward.

819 citations

Journal ArticleDOI
03 Nov 2017-Science
TL;DR: The suite of pressures that urban environments exert, the ways in which species may (or may not) adapt, and the larger impact of these evolutionary events on natural processes and human populations are reviewed.
Abstract: BACKGROUND The extent of urban areas is increasing around the world, and most humans now live in cities. Urbanization results in dramatic environmental change, including increased temperatures, more impervious surface cover, altered hydrology, and elevated pollution. Urban areas also host more non-native species and reduced abundance and diversity of many native species. These environmental changes brought by global urbanization are creating novel ecosystems with unknown consequences for the evolution of life. Here, we consider how early human settlements led to the evolution of human commensals, including some of the most notorious pests and disease vectors. We also comprehensively review how contemporary urbanization affects the evolution of species that coinhabit cities. ADVANCES A recent surge of research shows that urbanization affects both nonadaptive and adaptive evolution. Some of the clearest results of urban evolution show that cities elevate the strength of random genetic drift (stochastic changes in allele frequencies) and restrict gene flow (the movement of alleles between populations due to dispersal and mating). Populations of native species in cities often represent either relicts that predate urbanization or populations that established after a city formed. Both scenarios frequently result in a loss of genetic diversity within populations and increased differentiation between populations. Fragmentation and urban infrastructure also create barriers to dispersal, and consequently, gene flow is often reduced among city populations, which further contributes to genetic differentiation between populations. The influence of urbanization on mutation and adaptive evolution are less clear. A small number of studies suggest that industrial pollution can elevate mutation rates, but the pervasiveness of this effect is unknown. A better studied phenomenon are the effects of urbanization on evolution by natural selection. A growing number of studies show that plant and animal populations experience divergent selection between urban and nonurban environments. This divergent selection has led to adaptive evolution in life history, morphology, physiology, behavior, and reproductive traits. These adaptations typically evolve in response to pesticide use, pollution, local climate, or the physical structure of cities. Despite these important results, the genetic basis of adaptive evolution is known from only a few cases. Most studies also examine only a few populations in one city, and experimental validation is rare. OUTLOOK The study of evolution in urban areas provides insights into both fundamental and applied problems in biology. The thousands of cities throughout the world share some features while differing in other aspects related to their age, historical context, governmental policies, and local climate. Thus, the phenomenon of global urbanization represents an unintended but highly replicated global study of experimental evolution. We can harness this global urban experiment to understand the repeatability and pace of evolution in response to human activity. Among the most important unresolved questions is, how often do native and exotic species adapt to the particular environmental challenges found in cities? Such adaptations could be the difference as to whether a species persists or vanishes from urban areas. In this way, the study of urban evolution can help us understand how evolution in populations may contribute to conservation of rare species, and how populations can be managed to facilitate the establishment of resilient and sustainable urban ecosystems. In a similar way, understanding evolution in urban areas can lead to improved human health. For example, human pests frequently adapt to pesticides and evade control efforts because of our limited understanding of the size of populations and movement of individuals. Applied evolutionary studies could lead to more effective mitigation of pests and disease agents. The study of urban evolution has rapidly become an important frontier in biology, with implications for healthy and sustainable human populations in urban ecosystems.

568 citations