scispace - formally typeset
Search or ask a question
Author

Tom Darden

Other affiliations: Research Triangle Park
Bio: Tom Darden is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Molecular dynamics & P3M. The author has an hindex of 28, co-authored 60 publications receiving 47467 citations. Previous affiliations of Tom Darden include Research Triangle Park.


Papers
More filters
Journal ArticleDOI
TL;DR: An N⋅log(N) method for evaluating electrostatic energies and forces of large periodic systems is presented based on interpolation of the reciprocal space Ewald sums and evaluation of the resulting convolutions using fast Fourier transforms.
Abstract: An N⋅log(N) method for evaluating electrostatic energies and forces of large periodic systems is presented. The method is based on interpolation of the reciprocal space Ewald sums and evaluation of the resulting convolutions using fast Fourier transforms. Timings and accuracies are presented for three large crystalline ionic systems.

24,332 citations

Journal ArticleDOI
TL;DR: It is demonstrated that arbitrary accuracy can be achieved, independent of system size N, at a cost that scales as N log(N), which is comparable to that of a simple truncation method of 10 A or less.
Abstract: The previously developed particle mesh Ewald method is reformulated in terms of efficient B‐spline interpolation of the structure factors This reformulation allows a natural extension of the method to potentials of the form 1/rp with p≥1 Furthermore, efficient calculation of the virial tensor follows Use of B‐splines in place of Lagrange interpolation leads to analytic gradients as well as a significant improvement in the accuracy We demonstrate that arbitrary accuracy can be achieved, independent of system size N, at a cost that scales as N log(N) For biomolecular systems with many thousands of atoms this method permits the use of Ewald summation at a computational cost comparable to that of a simple truncation method of 10 A or less

17,897 citations

Journal ArticleDOI
TL;DR: The development, current features, and some directions for future development of the Amber package of computer programs, which contains a group of programs embodying a number of powerful tools of modern computational chemistry, focused on molecular dynamics and free energy calculations of proteins, nucleic acids, and carbohydrates.
Abstract: We describe the development, current features, and some directions for future development of the Amber package of computer programs. This package evolved from a program that was constructed in the late 1970s to do Assisted Model Building with Energy Refinement, and now contains a group of programs embodying a number of powerful tools of modern computational chemistry, focused on molecular dynamics and free energy calculations of proteins, nucleic acids, and carbohydrates.

7,672 citations

Journal ArticleDOI
01 Dec 2004-Proteins
TL;DR: A new force field called YAMBER (Yet Another Model Building and Energy Refinement force field), which is shown to do significantly less damage to X‐ray structures, often move homology models in the right direction, and occasionally make them look like experimental structures.
Abstract: Today's energy functions are not able yet to distinguish reliably between correct and almost correct protein models. Improving these near-native models is currently a major bottle-neck in homology modeling or experimental structure determination at low resolution. Increasingly accurate energy functions are required to complete the "last mile of the protein folding problem," for example during a molecular dynamics simulation. We present a new approach to reach this goal. For 50 high resolution X-ray structures, the complete unit cell was reconstructed, including disordered water molecules, counter ions, and hydrogen atoms. Simulations were then run at the pH at which the crystal was solved, while force-field parameters were iteratively adjusted so that the damage done to the structures was minimal. Starting with initial parameters from the AMBER force field, the optimization procedure converged at a new force field called YAMBER (Yet Another Model Building and Energy Refinement force field), which is shown to do significantly less damage to X-ray structures, often move homology models in the right direction, and occasionally make them look like experimental structures. Application of YAMBER during the CASP5 structure prediction experiment yielded a model for target 176 that was ranked first among 150 submissions. Due to its compatibility with the well-established AMBER format, YAMBER can be used by almost any molecular dynamics program. The parameters are freely available from www.yasara.org/yamber.

798 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An N⋅log(N) method for evaluating electrostatic energies and forces of large periodic systems is presented based on interpolation of the reciprocal space Ewald sums and evaluation of the resulting convolutions using fast Fourier transforms.
Abstract: An N⋅log(N) method for evaluating electrostatic energies and forces of large periodic systems is presented. The method is based on interpolation of the reciprocal space Ewald sums and evaluation of the resulting convolutions using fast Fourier transforms. Timings and accuracies are presented for three large crystalline ionic systems.

24,332 citations

Journal ArticleDOI
TL;DR: It is demonstrated that arbitrary accuracy can be achieved, independent of system size N, at a cost that scales as N log(N), which is comparable to that of a simple truncation method of 10 A or less.
Abstract: The previously developed particle mesh Ewald method is reformulated in terms of efficient B‐spline interpolation of the structure factors This reformulation allows a natural extension of the method to potentials of the form 1/rp with p≥1 Furthermore, efficient calculation of the virial tensor follows Use of B‐splines in place of Lagrange interpolation leads to analytic gradients as well as a significant improvement in the accuracy We demonstrate that arbitrary accuracy can be achieved, independent of system size N, at a cost that scales as N log(N) For biomolecular systems with many thousands of atoms this method permits the use of Ewald summation at a computational cost comparable to that of a simple truncation method of 10 A or less

17,897 citations

Journal ArticleDOI
TL;DR: NAMD as discussed by the authors is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems that scales to hundreds of processors on high-end parallel platforms, as well as tens of processors in low-cost commodity clusters, and also runs on individual desktop and laptop computers.
Abstract: NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This article, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Finally, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, for example, the Tcl scripting language. The article also provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu.

14,558 citations

Journal ArticleDOI
TL;DR: A new implementation of the molecular simulation toolkit GROMACS is presented which now both achieves extremely high performance on single processors from algorithmic optimizations and hand-coded routines and simultaneously scales very well on parallel machines.
Abstract: Molecular simulation is an extremely useful, but computationally very expensive tool for studies of chemical and biomolecular systems Here, we present a new implementation of our molecular simulation toolkit GROMACS which now both achieves extremely high performance on single processors from algorithmic optimizations and hand-coded routines and simultaneously scales very well on parallel machines The code encompasses a minimal-communication domain decomposition algorithm, full dynamic load balancing, a state-of-the-art parallel constraint solver, and efficient virtual site algorithms that allow removal of hydrogen atom degrees of freedom to enable integration time steps up to 5 fs for atomistic simulations also in parallel To improve the scaling properties of the common particle mesh Ewald electrostatics algorithms, we have in addition used a Multiple-Program, Multiple-Data approach, with separate node domains responsible for direct and reciprocal space interactions Not only does this combination of a

14,032 citations