Author
Tom Fawcett
Other affiliations: Stanford University, University of Massachusetts Amherst
Bio: Tom Fawcett is an academic researcher from Hewlett-Packard. The author has contributed to research in topics: Classifier (UML) & Profiling (information science). The author has an hindex of 27, co-authored 41 publications receiving 23553 citations. Previous affiliations of Tom Fawcett include Stanford University & University of Massachusetts Amherst.
Papers
More filters
TL;DR: The purpose of this article is to serve as an introduction to ROC graphs and as a guide for using them in research.
Abstract: Receiver operating characteristics (ROC) graphs are useful for organizing classifiers and visualizing their performance. ROC graphs are commonly used in medical decision making, and in recent years have been used increasingly in machine learning and data mining research. Although ROC graphs are apparently simple, there are some common misconceptions and pitfalls when using them in practice. The purpose of this article is to serve as an introduction to ROC graphs and as a guide for using them in research.
17,017 citations
Proceedings Article•
24 Jul 1998
TL;DR: This work describes and demonstrates what it believes to be the proper use of ROC analysis for comparative studies in machine learning research, and argues that this methodology is preferable both for making practical choices and for drawing conclusions.
Abstract: We analyze critically the use of classi cation accuracy to compare classi ers on natural data sets, providing a thorough investigation using ROC analysis, standard machine learning algorithms, and standard benchmark data sets. The results raise serious concerns about the use of accuracy for comparing classi ers and draw into question the conclusions that can be drawn from such studies. In the course of the presentation, we describe and demonstrate what we believe to be the proper use of ROC analysis for comparative studies in machine learning research. We argue that this methodology is preferable both for making practical choices and for drawing scienti c conclusions.
1,180 citations
TL;DR: It is shown that it is possible to build a hybrid classifier that will perform at least as well as the best available classifier for any target conditions, and in some cases, the performance of the hybrid actually can surpass that of the best known classifier.
Abstract: In real-world environments it usually is difficult to specify target operating conditions precisely, for example, target misclassification costs. This uncertainty makes building robust classification systems problematic. We show that it is possible to build a hybrid classifier that will perform at least as well as the best available classifier for any target conditions. In some cases, the performance of the hybrid actually can surpass that of the best known classifier. This robust performance extends across a wide variety of comparison frameworks, including the optimization of metrics such as accuracy, expected cost, lift, precision, recall, and workforce utilization. The hybrid also is efficient to build, to store, and to update. The hybrid is based on a method for the comparison of classifier performance that is robust to imprecise class distributions and misclassification costs. The ROC convex hull (ROCCH) method combines techniques from ROC analysis, decision analysis and computational geometry, and adapts them to the particulars of analyzing learned classifiers. The method is efficient and incremental, minimizes the management of classifier performance data, and allows for clear visual comparisons and sensitivity analyses. Finally, we point to empirical evidence that a robust hybrid classifier indeed is needed for many real-world problems.
1,134 citations
Posted Content•
TL;DR: The ROC convex hull (ROCCH) method as mentioned in this paper combines techniques from ROC analysis, decision analysis and computational geometry, and adapts them to the particulars of analyzing learned classifiers.
Abstract: In real-world environments it usually is difficult to specify target operating conditions precisely, for example, target misclassification costs. This uncertainty makes building robust classification systems problematic. We show that it is possible to build a hybrid classifier that will perform at least as well as the best available classifier for any target conditions. In some cases, the performance of the hybrid actually can surpass that of the best known classifier. This robust performance extends across a wide variety of comparison frameworks, including the optimization of metrics such as accuracy, expected cost, lift, precision, recall, and workforce utilization. The hybrid also is efficient to build, to store, and to update. The hybrid is based on a method for the comparison of classifier performance that is robust to imprecise class distributions and misclassification costs. The ROC convex hull (ROCCH) method combines techniques from ROC analysis, decision analysis and computational geometry, and adapts them to the particulars of analyzing learned classifiers. The method is efficient and incremental, minimizes the management of classifier performance data, and allows for clear visual comparisons and sensitivity analyses. Finally, we point to empirical evidence that a robust hybrid classifier indeed is needed for many real-world problems.
1,114 citations
13 Feb 2013
TL;DR: It is argued that there are good reasons why it has been hard to pin down exactly what is data science, and that to serve business effectively, it is important to understand its relationships to other important related concepts, and to begin to identify the fundamental principles underlying data science.
Abstract: Companies have realized they need to hire data scientists, academic institutions are scrambling to put together data-science programs, and publications are touting data science as a hot-even "sexy"-career choice. However, there is confusion about what exactly data science is, and this confusion could lead to disillusionment as the concept diffuses into meaningless buzz. In this article, we argue that there are good reasons why it has been hard to pin down exactly what is data science. One reason is that data science is intricately intertwined with other important concepts also of growing importance, such as big data and data-driven decision making. Another reason is the natural tendency to associate what a practitioner does with the definition of the practitioner's field; this can result in overlooking the fundamentals of the field. We believe that trying to define the boundaries of data science precisely is not of the utmost importance. We can debate the boundaries of the field in an academic setting, but in order for data science to serve business effectively, it is important (i) to understand its relationships to other important related concepts, and (ii) to begin to identify the fundamental principles underlying data science. Once we embrace (ii), we can much better understand and explain exactly what data science has to offer. Furthermore, only once we embrace (ii) should we be comfortable calling it data science. In this article, we present a perspective that addresses all these concepts. We close by offering, as examples, a partial list of fundamental principles underlying data science.
1,023 citations
Cited by
More filters
Book•
08 Sep 2000TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data
23,600 citations
Book•
25 Oct 1999
TL;DR: This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.
Abstract: Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. *Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects *Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods *Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks-in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization
20,196 citations
TL;DR: In this article, a method of over-sampling the minority class involves creating synthetic minority class examples, which is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
Abstract: An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of oversampling the minority (abnormal)cla ss and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space)tha n only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space)t han varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC)and the ROC convex hull strategy.
17,313 citations
TL;DR: The purpose of this article is to serve as an introduction to ROC graphs and as a guide for using them in research.
Abstract: Receiver operating characteristics (ROC) graphs are useful for organizing classifiers and visualizing their performance. ROC graphs are commonly used in medical decision making, and in recent years have been used increasingly in machine learning and data mining research. Although ROC graphs are apparently simple, there are some common misconceptions and pitfalls when using them in practice. The purpose of this article is to serve as an introduction to ROC graphs and as a guide for using them in research.
17,017 citations
TL;DR: A method based on the negative binomial distribution, with variance and mean linked by local regression, is proposed and an implementation, DESeq, as an R/Bioconductor package is presented.
Abstract: High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. We propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, DESeq, as an R/Bioconductor package.
13,356 citations