scispace - formally typeset
Search or ask a question
Author

Tom K. Kuo

Bio: Tom K. Kuo is an academic researcher from National Yang-Ming University. The author has contributed to research in topics: Mesenchymal stem cell & Cellular differentiation. The author has an hindex of 12, co-authored 14 publications receiving 3802 citations. Previous affiliations of Tom K. Kuo include National Health Research Institutes.

Papers
More filters
Journal ArticleDOI
01 Mar 2004-Blood
TL;DR: Surprisingly, these cells were also able to differentiate into neuroglial- and hepatocyte-like cells under appropriate induction conditions and, thus, they may be more than mesenchymal stem cells as evidenced by their ability to differentiation into cell types of all 3 germ layers.

1,320 citations

Journal ArticleDOI
TL;DR: Human MSCs from different sources are able to differentiate into functional hepatocyte‐like cells and, hence, may serve as a cell source for tissue engineering and cell therapy of hepatic tissues and indicates that a revision of the definition may be required.

882 citations

Journal ArticleDOI
TL;DR: This study investigated the changes of mitochondrial biogenesis and bioenergetic function using human mesenchymal stem cells (hMSCs) because of their well‐defined differentiation potentials and suggested an energy production transition from glycolysis to oxidative phosphorylation in hMSCs upon osteogenic induction.
Abstract: The multidifferentiation ability of mesenchymal stem cells holds great promise for cell therapy. Numerous studies have focused on the establishment of differentiation protocols, whereas little attention has been paid to the metabolic changes during the differentiation process. Mitochondria, the powerhouse of mammalian cells, vary in their number and function in different cell types with different energy demands, but how these variations are associated with cell differentiation remains elusive. In this study, we investigated the changes of mitochondrial biogenesis and bioenergetic function using human mesenchymal stem cells (hMSCs) because of their well-defined differentiation potentials. Upon osteogenic induction, the copy number of mitochondrial DNA, protein subunits of the respiratory enzymes, oxygen consumption rate, and intracellular ATP content were increased, indicating the upregulation of aerobic mitochondrial metabolism. On the other hand, undifferentiated hMSCs showed higher levels of glycolytic enzymes and lactate production rate, suggesting that hMSCs rely more on glycolysis for energy supply in comparison with hMSC-differentiated osteoblasts. In addition, we observed a dramatic decrease of intracellular reactive oxygen species (ROS) as a consequence of upregulation of two antioxidant enzymes, manganese-dependent superoxide dismutase and catalase. Finally, we found that exogenous H(2)O(2) and mitochondrial inhibitors could retard the osteogenic differentiation. These findings suggested an energy production transition from glycolysis to oxidative phosphorylation in hMSCs upon osteogenic induction. Meanwhile, antioxidant enzymes were concurrently upregulated to prevent the accumulation of intracellular ROS. Together, our findings suggest that coordinated regulation of mitochondrial biogenesis and antioxidant enzymes occurs synergistically during osteogenic differentiation of hMSCs.

550 citations

Journal ArticleDOI
TL;DR: This paper investigated the changes of mitochondrial biogenesis and bioenergetic function using human mesenchymal stem cells (hMSCs) because of their well-defined differentiation potentials.
Abstract: The multidifferentiation ability of mesenchymal stem cells holds great promise for cell therapy. Numerous studies have focused on the establishment of differentiation protocols, whereas little attention has been paid to the metabolic changes during the differentiation process. Mitochondria, the powerhouse of mammalian cells, vary in their number and function in different cell types with different energy demands, but how these variations are associated with cell differentiation remains elusive. In this study, we investigated the changes of mitochondrial biogenesis and bioenergetic function using human mesenchymal stem cells (hMSCs) because of their well‐defined differentiation potentials. Upon osteogenic induction, the copy number of mitochondrial DNA, protein subunits of the respiratory enzymes, oxygen consumption rate, and intracellular ATP content were increased, indicating the upregulation of aerobic mitochondrial metabolism. On the other hand, undifferentiated hMSCs showed higher levels of glycolytic enzymes and lactate production rate, suggesting that hMSCs rely more on glycolysis for energy supply in comparison with hMSC‐differentiated osteoblasts. In addition, we observed a dramatic decrease of intracellular reactive oxygen species (ROS) as a consequence of upregulation of two antioxidant enzymes, manganese‐dependent superoxide dismutase and catalase. Finally, we found that exogenous H2O2 and mitochondrial inhibitors could retard the osteogenic differentiation. These findings suggested an energy production transition from glycolysis to oxidative phosphorylation in hMSCs upon osteogenic induction. Meanwhile, antioxidant enzymes were concurrently upregulated to prevent the accumulation of intracellular ROS. Together, our findings suggest that coordinated regulation of mitochondrial biogenesis and antioxidant enzymes occurs synergistically during osteogenic differentiation of hMSCs.

500 citations

Journal ArticleDOI
TL;DR: Bone marrow-derived mesenchymal stem cells can effectively rescue experimental liver failure and contribute to liver regeneration and offer a potentially alternative therapy to organ transplantation for treatment of liver diseases.

442 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Both UCB and AT are attractive alternatives to BM in isolating MSC: AT as it contains MSCs at the highest frequency and UCB as it seems to be expandable to higher numbers.
Abstract: Mesenchymal stem cells (MSCs) represent a promising tool for new clinical concepts in supporting cellular therapy. Bone marrow (BM) was the first source reported to contain MSCs. However, for clinical use, BM may be detrimental due to the highly invasive donation procedure and the decline in MSC number and differentiation potential with increasing age. More recently, umbilical cord blood (UCB), attainable by a less invasive method, was introduced as an alternative source for MSCs. Another promising source is adipose tissue (AT). We compared MSCs derived from these sources regarding morphology, the success rate of isolating MSCs, colony frequency, expansion potential, multiple differentiation capacity, and immune phenotype. No significant differences concerning the morphology and immune phenotype of the MSCs derived from these sources were obvious. Differences could be observed concerning the success rate of isolating MSCs, which was 100% for BM and AT, but only 63% for UCB. The colony frequency was lowest in UCB, whereas it was highest in AT. However, UCB-MSCs could be cultured longest and showed the highest proliferation capacity, whereas BM-MSCs possessed the shortest culture period and the lowest proliferation capacity. Most strikingly, UCB-MSCs showed no adipogenic differentiation capacity, in contrast to BM- and AT-MSCs. Both UCB and AT are attractive alternatives to BM in isolating MSC: AT as it contains MSCs at the highest frequency and UCB as it seems to be expandable to higher numbers.

3,057 citations

Journal ArticleDOI
TL;DR: More and more evidence suggests that mROS are critical for healthy cell function, and this evidence is discussed following some background on the generation and regulation ofmROS.

2,038 citations

Journal ArticleDOI
28 Jun 2006-Nature
TL;DR: The interplay between stem cells and their niche creates the dynamic system necessary for sustaining tissues, and for the ultimate design of stem-cell therapeutics.
Abstract: Stem-cell populations are established in 'niches'--specific anatomic locations that regulate how they participate in tissue generation, maintenance and repair. The niche saves stem cells from depletion, while protecting the host from over-exuberant stem-cell proliferation. It constitutes a basic unit of tissue physiology, integrating signals that mediate the balanced response of stem cells to the needs of organisms. Yet the niche may also induce pathologies by imposing aberrant function on stem cells or other targets. The interplay between stem cells and their niche creates the dynamic system necessary for sustaining tissues, and for the ultimate design of stem-cell therapeutics.

1,820 citations

Journal ArticleDOI
TL;DR: Significant ambiguities still plague the field regarding the nature, identity, function, mode of isolation and experimental handling of MSCs, which have a major impact on their envisioned therapeutic use.
Abstract: Mesenchymal stem cells (MSCs) are the focus of intensive efforts worldwide directed not only at elucidating their nature and unique properties but also developing cell-based therapies for a diverse range of diseases. More than three decades have passed since the original formulation of the concept, revolutionary at the time, that multiple connective tissues could emanate from a common progenitor or stem cell retained in the postnatal bone marrow. Despite the many important advances made since that time, substantial ambiguities still plague the field regarding the nature, identity, function, mode of isolation and experimental handling of MSCs. These uncertainties have a major impact on their envisioned therapeutic use.

1,044 citations

Journal ArticleDOI
TL;DR: Recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials are highlighted.
Abstract: Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Wharton's jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials.

957 citations