scispace - formally typeset
Search or ask a question
Author

Tom Reuter

Bio: Tom Reuter is an academic researcher from University of Helsinki. The author has contributed to research in topics: Rhodopsin & Retina. The author has an hindex of 28, co-authored 44 publications receiving 2897 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated the accuracy limits of putative universal templates for visual pigment absorbance spectra, and if possible to amend the templates to overcome the limitations, and concluded that the idea of universal templates remains valid and useful at the present level of accuracy of data on photoreceptor absorbance.
Abstract: Absorbance spectra were recorded by microspectrophotometry from 39 different rod and cone types representing amphibians, reptiles, and fishes, with A1- or A2-based visual pigments and λmax ranging from 357 to 620 nm. The purpose was to investigate accuracy limits of putative universal templates for visual pigment absorbance spectra, and if possible to amend the templates to overcome the limitations. It was found that (1) the absorbance spectrum of frog rhodopsin extract very precisely parallels that of rod outer segments from the same individual, with only a slight hypsochromic shift in λmax, hence templates based on extracts are valid for absorbance in situ; (2) a template based on the bovine rhodopsin extract data of Partridge and De Grip (1991) describes the absorbance of amphibian rod outer segments excellently, contrary to recent electrophysiological results; (3) the λmax/λ invariance of spectral shape fails for A1 pigments with small λmax and for A2 pigments with large λmax, but the deviations are systematic and can be readily incorporated into, for example, the Lamb (1995) template. We thus propose modified templates for the main “α-band” of A1 and A2 pigments and show that these describe both absorbance and spectral sensitivities of photoreceptors over the whole range of λmax. Subtraction of the α-band from the full absorbance spectrum leaves a “β-band” described by a λmax-dependent Gaussian. We conclude that the idea of universal templates (one for A1- and one for A2-based visual pigments) remains valid and useful at the present level of accuracy of data on photoreceptor absorbance and sensitivity. The sum of our expressions for the α- and β-band gives a good description for visual pigment spectra with λmax > 350 nm.

985 citations

Journal ArticleDOI
A.-C. Aho1, Kristian Donner1, C. Hydén1, L O Larsen1, Tom Reuter1 
28 Jul 1988-Nature
TL;DR: The performance of dark-adapted toads and frogs is studied and it is shown that the performance limit of visually guided behaviour is also set by thermal isomerizations, as visual sensitivity limited by thermal events should rise when the temperature falls.
Abstract: The weakest pulse of light a human can detect sends about 100 photons through the pupil and produces 10-20 rhodopsin isomerizations in a small retinal area. It has been postulated that we cannot see single photons because of a retinal noise arising from randomly occurring thermal isomerizations. Direct recordings have since demonstrated the existence of electrical 'dark' rod events indistinguishable from photoisomerization signals. Their mean rate of occurrence is roughly consistent with the 'dark light' in psychophysical threshold experiments, and their thermal parameters justify an identification with thermal isomerizations. In the retina of amphibians, a small proportion of sensitive ganglion cells have a performance-limiting noise that is low enough to be well accounted for by these events. Here we study the performance of dark-adapted toads and frogs and show that the performance limit of visually guided behaviour is also set by thermal isomerizations. As visual sensitivity limited by thermal events should rise when the temperature falls, poikilothermous vertebrates living at low temperatures should then reach light sensitivities unattainable by mammals and birds with optical factors equal. Comparison of different species at different temperatures shows a correlation between absolute threshold intensities and estimated thermal isomerization rates in the retina.

218 citations

Journal ArticleDOI
TL;DR: The functional consequences of changes in scale of the middle ear when going from the smallest mammals to the largest are analyzed and it is shown that if the high frequency hearing limit of isometric ears is limited by ossicle inertia, it should be inversely proportional to the cubic root of the ossicular mass.

127 citations

Journal ArticleDOI
TL;DR: A cranial endocast method for estimating olfactory organ size by measuring the perforated part of the ethmoid bone is presented, finding that sensitivity increases with increasing absolute organ size.
Abstract: The relation between size and performance is central for understanding the evolution of sensory systems, and much interest has been focused on mammalian eyes and ears. However, we know very little about olfactory organ size (OOS), as data for a representative set of mammals are lacking. Here, we present a cranial endocast method for estimating OOS by measuring an easily accessible part of the system, the perforated part of the ethmoid bone, through which the primary olfactory axons reach the olfactory bulb. In 16 species, for which relevant data are available, the area of the perforated ethmoid bone is directly proportional to the area of the olfactory epithelium. Thus, the ethmoid bone is a useful indicator enabling us to analyse 150 species, and describe the distribution of OOS within the class Mammalia. In the future, a method using skull material may be applied to fossil skulls. In relation to skull size, humans, apes and monkeys have small olfactory organs, while prosimians have OOSs typical for mammals of their size. Large ungulates have impressive olfactory organs. Relating anatomy to published thresholds, we find that sensitivity increases with increasing absolute organ size.

97 citations

Journal ArticleDOI
TL;DR: Ganglion cell somata were drawn, measured and counted in flatmounted crucian carp and goldfish retinas stained with cresyl violet or methylene blue to suggest that the ganglion cells can be divided into two populations with overlapping soma sizes.
Abstract: Ganglion cell somata were drawn, measured and counted in flatmounted crucian carp and goldfish retinas stained with cresyl violet or methylene blue. Soma diameter histograms suggest that the ganglion cells can be divided into two populations with overlapping soma sizes: a large group of small cells and a small group of large cells, the latter constituting 2.5–5% of all ganglion cells. With increasing distance from the optic disc the mean soma diameter increases while the ganglion cell density decreases. In a peripheral growth zone close to the margin the ganglion cells become smaller again. The total number of ganglion cells in retinas of different size was calculated from the areas of the flat-mounted preparations and the cell densities in two representative regions. In the crucian carp population used in this work the total number of ganglion cells per retina was found to increase from roughly 140,000 (mean of 8 scattered values) to a full 200,000 between eye diameters 4 and 10 mm, this increase taking place mainly between eye diameters of 4 and 6.5 mm. Thus, due to a drastically decreasing cell density, the total number of ganglion cells increases only by a factor of about 1.5 while the retinal area becomes sixfold. During the same growth period the mean soma diameter increases by a factor of about 1.3 and the soma volume more than doubles. The optic nerve of a small crucian carp was studied by electron microscopy. About equal numbers of unmyelinated and myelinated axons were found. The axons in the optic nerve are, on an average, considerably thicker than the axons on the retinal surface.

96 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Sensory systems, signals, signaling behavior, and habitat choice are evolutionarily coupled and should coevolve in predictable directions, determined by environmental biophysics, neurobiology, and the genetics of the suites of traits.
Abstract: There is a bewildering diversity of signals, sensory systems, and signaling behavior. A consideration of how these traits affect each other's evolution explains some of this diversity. Natural selection favors signals, receptors, and signaling behavior that maximize the received signals relative to background noise and minimize signal degradation. Properties of sensory systems bias the direction of evolution of the signals that they receive. For example, females may prefer males whose signals they can perceive more easily, and this will lead to the spread of more easily perceived male traits. Environmental conditions during signal transmission and detection also affect signal perception. Specific environmental conditions will bias the evolutionary direction of behavior, which affects the time and place of signaling as well as microhabitat preferences. Increased specialization of microhabitats and signaling behavior may lead to biased evolution of the sensory systems to work more efficiently. Thus, sensory...

1,717 citations

Journal ArticleDOI
TL;DR: Spectral sensitivities, measured under bright conditions, for di–, tri–, and tetrachromatic eyes from a range of animals can be modelled by assuming that thresholds are set by colour opponency mechanisms whose performance is limited by photoreceptor noise, the achromatic signal being disregarded.
Abstract: Inferences about mechanisms at one particular stage of a visual pathway may be made from psychophysical thresholds only if the noise at the stage in question dominates that in the others. Spectral sensitivities, measured under bright conditions, for di-, tri-, and tetrachromatic eyes from a range of animals can be modelled by assuming that thresholds are set by colour opponency mechanisms whose performance is limited by photoreceptor noise, the achromatic signal being disregarded. Noise in the opponency channels themselves is therefore not statistically independent, and it is not possible to infer anything more about the channels from psychophysical thresholds. As well as giving insight into mechanisms of vision, the model predicts the performance of colour vision in animals where physiological and anatomical data on the eye are available, but there are no direct measurements of perceptual thresholds. The model, therefore, is widely applicable to comparative studies of eye design and visual ecology.

1,128 citations

Journal ArticleDOI
TL;DR: The conductivity bridge derives its bridge source from a self-contained vacuum tube oscillator adjusted to approximately 1,000 cycles as mentioned in this paper, which operates directly from the A.C. power source.
Abstract: The new Conductivity Bridge derives its bridge source. voltage from a self-contained vacuum tube oscilltor adjusted to approximately 1,000 cycles. Voltage for the amplifier and null indicator tubes is provided by a.builtin D.C. power supply which operates directly from the A.C. power source. 9-324 Conductivity Bridge, without Conductivity Cell, for use with 110 volts 5060 cycle A.C. 9-351.Cosi~uCvity Cell, for use with Conductivity Bridge, constant 0.8, $20.00

1,028 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the accuracy limits of putative universal templates for visual pigment absorbance spectra, and if possible to amend the templates to overcome the limitations, and concluded that the idea of universal templates remains valid and useful at the present level of accuracy of data on photoreceptor absorbance.
Abstract: Absorbance spectra were recorded by microspectrophotometry from 39 different rod and cone types representing amphibians, reptiles, and fishes, with A1- or A2-based visual pigments and λmax ranging from 357 to 620 nm. The purpose was to investigate accuracy limits of putative universal templates for visual pigment absorbance spectra, and if possible to amend the templates to overcome the limitations. It was found that (1) the absorbance spectrum of frog rhodopsin extract very precisely parallels that of rod outer segments from the same individual, with only a slight hypsochromic shift in λmax, hence templates based on extracts are valid for absorbance in situ; (2) a template based on the bovine rhodopsin extract data of Partridge and De Grip (1991) describes the absorbance of amphibian rod outer segments excellently, contrary to recent electrophysiological results; (3) the λmax/λ invariance of spectral shape fails for A1 pigments with small λmax and for A2 pigments with large λmax, but the deviations are systematic and can be readily incorporated into, for example, the Lamb (1995) template. We thus propose modified templates for the main “α-band” of A1 and A2 pigments and show that these describe both absorbance and spectral sensitivities of photoreceptors over the whole range of λmax. Subtraction of the α-band from the full absorbance spectrum leaves a “β-band” described by a λmax-dependent Gaussian. We conclude that the idea of universal templates (one for A1- and one for A2-based visual pigments) remains valid and useful at the present level of accuracy of data on photoreceptor absorbance and sensitivity. The sum of our expressions for the α- and β-band gives a good description for visual pigment spectra with λmax > 350 nm.

985 citations

Journal ArticleDOI
Caroline M. Pond1
TL;DR: This book is based on a symposium organized by the Entomological Society of America in 1980 and will prove to be an important book in bringing together recent research on the mating systems of orthopterans, and discussing their behaviour in the light of current theory in behavioura].

911 citations