scispace - formally typeset
Search or ask a question
Author

Tom Schoonjans

Other affiliations: University of Sassari
Bio: Tom Schoonjans is an academic researcher from Ghent University. The author has contributed to research in topics: Cosmic dust & Interstellar medium. The author has an hindex of 19, co-authored 44 publications receiving 1253 citations. Previous affiliations of Tom Schoonjans include University of Sassari.

Papers
More filters
Journal ArticleDOI
TL;DR: Xraylib as discussed by the authors is an ANSI C library that provides convenient access to a large number of X-ray related databases, with a focus on quantitative X -ray fluorescence applications.

322 citations

Journal ArticleDOI
15 Aug 2014-Science
TL;DR: The Stardust Interstellar Dust Collector captured seven particles and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream and more than 50 spacecraft debris particles were also identified as discussed by the authors.
Abstract: Seven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory. The seven candidate interstellar particles are diverse in elemental composition, crystal structure, and size. The presence of crystalline grains and multiple iron-bearing phases, including sulfide, in some particles indicates that individual interstellar particles diverge from any one representative model of interstellar dust inferred from astronomical observations and theory.

176 citations

Journal ArticleDOI
TL;DR: In this article, a general Monte Carlo code for the simulation of energy dispersive X-ray fluorescence (ED-XRF) spectrometers is presented, which includes several unique features such as simulation of M-lines and cascade effects.

75 citations

Journal ArticleDOI
TL;DR: In this paper, As, Cd, Cu, Mn, Ni, Ni and Ti were extracted from white rice and brown rice by inductively coupled plasma sector field mass spectrometry (ICP-SF-MS).

75 citations

Journal ArticleDOI
TL;DR: In this paper, a quantification tool for energy-dispersive X-ray fluorescence (ED-XRF) spectral data is presented, based on the application of Monte Carlo simulations in an iterative, inverse manner.

68 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors consider the extensive experimental and computer simulation studies that have been performed over the past several decades on what the nature of the primary damage is, and provide alternatives to the current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model for metals.

334 citations

Journal ArticleDOI
TL;DR: X-ray fluorescence imaging is a powerful technique that can be used to determine elemental and chemical species distributions at a range of spatial resolutions within samples of biological tissues, and the technique is capable of determining metal and nonmetal distributions on a variety of length scales.
Abstract: From the perspective of a chemist, biology confers a rich variety of roles on a number of metal ions. It is widely agreed that a large fraction of the genomic output of living things contains metal or metalloid ions, although estimates of this fraction vary widely and depend upon which metal ions are considered.1−3 Moreover, recent reports suggest that, at least in some cases, there are many uncharacterized metalloproteins.4 With inclusion of the s-block metals such as Na, K, Mg, and Ca, the proportion likely approaches 100%; recent estimates from the protein data bank indicate that the prevalence of heavier metal ions of atomic number above 20 within proteins is around 22%,5 with Zn2+ proteins alone constituting about 11%. Living organisms have an inherent and very rich physical structure, with relevant length scales ranging from the nanometer scale for subcellular structure to hundreds of micrometers and above for tissue, organ, or organism-level organization. The ability to derive the spatial distribution of elements on this diversity of length scales is a key to understanding their function. Metals play essential and central roles in the most important and chemically challenging processes required for life, with active site structures and mechanisms that, at the time of their discovery, have usually not yet been duplicated in the chemical laboratory. Furthermore, diseases of metal dysregulation can cause disruption in the distribution of metals.6 For example, Menke’s disease and Occipital Horn Syndrome,7 and Wilson’s disease,8 involve disruption in copper uptake and excretion, respectively, through mutation in the ATP7A and ATP7B Cu transporters.9 The mechanisms of action of toxic elements such as mercury and arsenic are also of interest, as are essential nonmetal trace elements, such as selenium. Likewise, an increasing number of pharmaceuticals include metals or heavier elements; such chemotherapeutic drugs include the platinum derivatives cisplatin and carboplatin,10 some promising new ruthenium drugs,11 and arsenic trioxide, which has been used to treat promyelocytic leukemia.12 Understanding the localization, speciation, and distribution of these at various length scales is of significant interest. A wide variety of heavier elements can be probed by X-ray spectroscopic methods; these are shown graphically in Figure ​Figure1.1. X-ray fluorescence imaging is a powerful technique that can be used to determine elemental and chemical species distributions at a range of spatial resolutions within samples of biological tissues. Most modern applications require the use of synchrotron radiation as a tunable and high spectral brightness source of X-rays. The method uses a microfocused X-ray beam to excite X-ray fluorescence from specific elements within a sample. Because the method depends upon atomic physics, it is highly specific and enables a wide range of chemical elements to be investigated. A significant advantage over more conventional methods is the ability to measure intact biological samples without significant treatment with exogenous reagents. The technique is capable of determining metal and nonmetal distributions on a variety of length scales, with information on chemical speciation also potentially available. Figure ​Figure22 shows examples of rapid-scan X-ray fluorescence imaging at two contrasting length scales: rapid-scan imaging13 of a section of a human brain taken from an individual suffering from multiple sclerosis and showing elemental profiles for Fe, Cu, and Zn;14 and a high-resolution image showing mercury and other elements in a section of retina from a zebrafish larva treated with methylmercury chloride.15 We will discuss both the state of the art in terms of experimental methods and some recent applications of the methods. This Review considers X-ray fluorescence imaging with incident X-ray energies in the hard X-ray regime, which we define as 2 keV and above. We review technologies for producing microfocused X-ray beams and for detecting X-ray fluorescence, as well as methods that confer chemical selectivity or three-dimensional visualization. We discuss applications in key areas with a view to providing examples of how the technique can provide information on biological systems. We also discuss synergy with other methods, which have overlapping or complementary capabilities. Our goal is to provide useful and pertinent information to encourage and enable further use of this powerful method in chemical and biochemical studies of living organisms. Figure 1 Periodic table of the elements showing elements of biological interest that can be probed using X-ray fluorescence imaging. Elements are divided into three categories, those that are physiologically important, those that are pharmacologically active, ...

245 citations

Journal ArticleDOI
TL;DR: The THEMIS (The Heterogeneous dust Evolution Model for Interstellar Solids) model as discussed by the authors is based upon a core model that was developed to explain the dust extinction and emission in the diffuse interstellar medium.
Abstract: Here we introduce the interstellar dust modelling framework THEMIS (The Heterogeneous dust Evolution Model for Interstellar Solids), which takes a global view of dust and its evolution in response to the local conditions in interstellar media. This approach is built upon a core model that was developed to explain the dust extinction and emission in the diffuse interstellar medium. The model was then further developed to self-consistently include the effects of dust evolution in the transition to denser regions. The THEMIS approach is under continuous development and currently we are extending the framework to explore the implications of dust evolution in HII regions and the photon-dominated regions associated with star formation. We provide links to the THEMIS, DustEM and DustPedia websites where more information about the model, its input data and applications can be found.

204 citations

Journal ArticleDOI
TL;DR: The THEMIS (The Heterogeneous dust Evolution Model for Interstellar Solids) model as discussed by the authors is based on a core model that was developed to explain the dust extinction and emission in the diffuse interstellar medium.
Abstract: Here we introduce the interstellar dust modelling framework THEMIS (The Heterogeneous dust Evolution Model for Interstellar Solids), which takes a global view of dust and its evolution in response to the local conditions in interstellar media. This approach is built upon a core model that was developed to explain the dust extinction and emission in the diffuse interstellar medium. The model was then further developed to self-consistently include the effects of dust evolution in the transition to denser regions. The THEMIS approach is under continuous development and we are currently extending the framework to explore the implications of dust evolution in HII regions and the photon-dominated regions associated with star formation. We provide links to the THEMIS, DustEM and DustPedia websites where more information about the model, its input data and applications can be found.

199 citations

Journal ArticleDOI
TL;DR: The analytical requirements for obtaining reliable data for iAs in food are discussed, and iAs levels in foods and beverages are summarized, along with information on other (potentially) toxic co-occurring organoarsenic compounds.

193 citations