scispace - formally typeset
Search or ask a question
Author

Tomasz Kowalewski

Bio: Tomasz Kowalewski is an academic researcher from Carnegie Mellon University. The author has contributed to research in topics: Atom-transfer radical-polymerization & Copolymer. The author has an hindex of 52, co-authored 100 publications receiving 10640 citations. Previous affiliations of Tomasz Kowalewski include Polish Academy of Sciences & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the general methodology for the synthesis of polymer brushes from flat surfaces, polymers and colloids is summarized focusing on reports using ATRP and the morphology of ultrathin films from polymer brushes is discussed using atomic force microscopy (AFM) and other techniques to confirm the formation of nanoscale structure and organization.
Abstract: Atom transfer radical polymerization (ATRP) is a robust method for the preparation of well-defined (co)polymers. This process has also enabled the preparation of a wide range of polymer brushes where (co)polymers are covalently attached to either curved or flat surfaces. In this review, the general methodology for the synthesis of polymer brushes from flat surfaces, polymers and colloids is summarized focusing on reports using ATRP. Additionally, the morphology of ultrathin films from polymer brushes is discussed using atomic force microscopy (AFM) and other techniques to confirm the formation of nanoscale structure and organization. Formation of polymer brushes by ATRP.

670 citations

Journal ArticleDOI
TL;DR: The ability to tailor the composition, structure, properties and function of organic materials with control on the nanometer scale is leading to the production of nanomaterials that exhibit interesting properties, and which may be applicable in broadly ranging technologies as discussed by the authors.
Abstract: Over the past decade, there has been a surge of interest in nanomaterials, which include structures with at least one dimension under 100 nm. It has been found that the ability to tailor the composition, structure, properties, and function of organic materials with control on the nanometer scale is leading to the production of nanomaterials that exhibit interesting properties, and which may be applicable in broadly ranging technologies. Of particular recent interest are hollow-sphere structures, due to their potential for encapsulation of large quantities of guest molecules or largesized guests within the “empty” core domain. For example, the microencapsulation of biologically active components has been investigated for the development of artificial cells. 1

556 citations

Journal ArticleDOI
TL;DR: Low polydispersity regioregular polythiophenes with number average molecular weights were cast under the same conditions from solution to form a series of FETs, indicating that conjugated backbones were oriented perpendicular to the nanofibril axes.
Abstract: Low polydispersity regioregular polythiophenes with number average molecular weights ranging from 2 to 13 kDa were cast under the same conditions from solution to form a series of field effect transistors (FETs). Tapping mode AFM and grazing incidence small-angle X-ray scattering revealed that in all cases the polymers formed regular nanofibrillar morphologies with the width of nanofibrils proportional to the weight average contour length of polymer chains, indicating that conjugated backbones were oriented perpendicular to the nanofibril axes. FET charge carrier mobilities exhibited exponential dependence on nanofibril width, pointing to the decisive role of extended conjugated pathways in charge transport.

445 citations

Journal ArticleDOI
TL;DR: It is found that Abca1-/- mice have greatly decreased apoE levels in both the cortex (80% reduction) and the CSF (98% reduction), demonstrating that ABCA1 plays a critical role in CNS apOE metabolism.

403 citations

Journal ArticleDOI
TL;DR: In this article, the authors applied in situ atomic force microscopy to directly observe the aggregation of Alzheimer's β-amyloid peptide (Aβ) in contact with two model solid surfaces: hydrophilic mica and hydrophobic graphite.
Abstract: We have applied in situ atomic force microscopy to directly observe the aggregation of Alzheimer’s β-amyloid peptide (Aβ) in contact with two model solid surfaces: hydrophilic mica and hydrophobic graphite. The time course of aggregation was followed by continuous imaging of surfaces remaining in contact with 10–500 μM solutions of Aβ in PBS (pH 7.4). Visualization of fragile nanoscale aggregates of Aβ was made possible by the application of a tapping mode of imaging, which minimizes the lateral forces between the probe tip and the sample. The size and the shape of Aβ aggregates, as well as the kinetics of their formation, exhibited pronounced dependence on the physicochemical nature of the surface. On hydrophilic mica, Aβ formed particulate, pseudomicellar aggregates, which at higher Aβ concentration had the tendency to form linear assemblies, reminiscent of protofibrillar species described recently in the literature. In contrast, on hydrophobic graphite Aβ formed uniform, elongated sheets. The dimensions of those sheets were consistent with the dimensions of β-sheets with extended peptide chains perpendicular to the long axis of the aggregate. The sheets of Aβ were oriented along three directions at 120° to each other, resembling the crystallographic symmetry of a graphite surface. Such substrate-templated self-assembly may be the distinguishing feature of β-sheets in comparison with α-helices. These studies show that in situ atomic force microscopy enables direct assessment of amyloid aggregation in physiological fluids and suggest that Aβ fibril formation may be driven by interactions at the interface of aqueous solutions and hydrophobic substrates, as occurs in membranes and lipoprotein particles in vivo.

403 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review summarizes recent progress in the development of polymer solar cells and provides a synopsis of major achievements in the field over the past few years, while potential future developments and the applications of this technology are also briefly discussed.
Abstract: This Review summarizes recent progress in the development of polymer solar cells. It covers the scientific origins and basic properties of polymer solar cell technology, material requirements and device operation mechanisms, while also providing a synopsis of major achievements in the field over the past few years. Potential future developments and the applications of this technology are also briefly discussed.

3,832 citations

Journal ArticleDOI
TL;DR: This article reviews state-of-the-art research activities in the field, focusing on the scientific and technological possibilities offered by photocatalytic materials, and highlights crucial issues that should be addressed in future research activities.
Abstract: Semiconductor photocatalysis has received much attention as a potential solution to the worldwide energy shortage and for counteracting environmental degradation. This article reviews state-of-the-art research activities in the field, focusing on the scientific and technological possibilities offered by photocatalytic materials. We begin with a survey of efforts to explore suitable materials and to optimize their energy band configurations for specific applications. We then examine the design and fabrication of advanced photocatalytic materials in the framework of nanotechnology. Many of the most recent advances in photocatalysis have been realized by selective control of the morphology of nanomaterials or by utilizing the collective properties of nano-assembly systems. Finally, we discuss the current theoretical understanding of key aspects of photocatalytic materials. This review also highlights crucial issues that should be addressed in future research activities.

3,265 citations

Journal ArticleDOI
Chengliang Wang1, Huanli Dong1, Wenping Hu1, Yunqi Liu1, Daoben Zhu1 
TL;DR: The focus of this review will be on the performance analysis of π-conjugated systems in OFETs, a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals that provide an important insight into the charge transport of ρconjugate systems.
Abstract: Since the discovery of highly conducting polyacetylene by Shirakawa, MacDiarmid, and Heeger in 1977, π-conjugated systems have attracted much attention as futuristic materials for the development and production of the next generation of electronics, that is, organic electronics. Conceptually, organic electronics are quite different from conventional inorganic solid state electronics because the structural versatility of organic semiconductors allows for the incorporation of functionality by molecular design. This versatility leads to a new era in the design of electronic devices. To date, the great number of π-conjugated semiconducting materials that have either been discovered or synthesized generate an exciting library of π-conjugated systems for use in organic electronics. 11 However, some key challenges for further advancement remain: the low mobility and stability of organic semiconductors, the lack of knowledge regarding structure property relationships for understanding the fundamental chemical aspects behind the structural design, and realization of desired properties. Organic field-effect transistors (OFETs) are a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals (drain, source, and gate electrodes). OFETs are not only essential building blocks for the next generation of cheap and flexible organic circuits, but they also provide an important insight into the charge transport of πconjugated systems. Therefore, they act as strong tools for the exploration of the structure property relationships of πconjugated systems, such as parameters of field-effect mobility (μ, the drift velocity of carriers under unit electric field), current on/off ratio (the ratio of the maximum on-state current to the minimum off-state current), and threshold voltage (the minimum gate voltage that is required to turn on the transistor). 17 Since the discovery of OFETs in the 1980s, they have attracted much attention. Research onOFETs includes the discovery, design, and synthesis of π-conjugated systems for OFETs, device optimization, development of applications in radio frequency identification (RFID) tags, flexible displays, electronic papers, sensors, and so forth. It is beyond the scope of this review to cover all aspects of π-conjugated systems; hence, our focus will be on the performance analysis of π-conjugated systems in OFETs. This should make it possible to extract information regarding the fundamental merit of semiconducting π-conjugated materials and capture what is needed for newmaterials and what is the synthesis orientation of newπ-conjugated systems. In fact, for a new science with many practical applications, the field of organic electronics is progressing extremely rapidly. For example, using “organic field effect transistor” or “organic field effect transistors” as the query keywords to search the Web of Science citation database, it is possible to show the distribution of papers over recent years as shown in Figure 1A. It is very clear

2,942 citations