scispace - formally typeset
Search or ask a question
Author

Tomasz Kozacki

Bio: Tomasz Kozacki is an academic researcher from Warsaw University of Technology. The author has contributed to research in topics: Holography & Holographic display. The author has an hindex of 25, co-authored 153 publications receiving 1635 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work presents color holographic display, which is based on a single phase only spatial light modulator (SLM), which fully utilizes SLM bandwidth and has capability of full-color, full frame rate imaging of outstanding quality.
Abstract: This work presents color holographic display, which is based on a single phase only spatial light modulator (SLM). In the display entire area of the SLM is illuminated by an on-axis white light beam generated by a single large LED. The holographic display fully utilizes SLM bandwidth and has capability of full-color, full frame rate imaging of outstanding quality. This is achieved through: (i) optimal use of the source coherence volume, (ii) application of the single white light LED source, (iii) a development of a novel concept of color multiplexing technique with color filter mask in Fourier plane of the SLM, (iv) and a complex coding with improved diffraction efficiency. Within experimental part of the paper we show single color, full-color holographic 2D and 3D images generated for reconstruction depth exceeding 10 cm.

94 citations

Journal ArticleDOI
TL;DR: An extended viewing angle holographic display for reconstruction of real world objects in which the capture and display systems are decoupled by employing multiple tilted spatial light modulators arranged in a circular configuration is presented.
Abstract: This paper presents an extended viewing angle holographic display for reconstruction of real world objects in which the capture and display systems are decoupled. This is achieved by employing multiple tilted spatial light modulators (SLMs) arranged in a circular configuration. In order to prove the proper reconstruction and visual perception of holographic images the Wigner distribution function is employed. We describe both the capture system using a single static camera with a rotating object and a holographic display utilizing six tilted SLMs. The experimental results based on the reconstruction of computer generated and real world scenes are presented. The coherent noise removal procedure is described and implemented. The experiments prove the possibility to view images reconstructed in the display binocularly and with good quality.

82 citations

Journal ArticleDOI
TL;DR: The experiments presented prove the possibility to view binocularly having good quality images reconstructed in full FoV of the display, and increase effective space bandwidth product of display system data from 12.4 to 50 megapixels.
Abstract: This paper presents a wide angle holographic display system with extended viewing angle in both horizontal and vertical directions. The display is constructed from six spatial light modulators (SLM) arranged on a circle and an additional SLM used for spatiotemporal multiplexing and a viewing angle extension in two perpendicular directions. The additional SLM, that is synchronized with the SLMs on the circle is placed in the image space. This method increases effective space bandwidth product of display system data from 12.4 to 50 megapixels. The software solution based on three Nvidia graphic cards is developed and implemented in order to achieve fast and synchronized displaying. The experiments presented for both synthetic and real 3D data prove the possibility to view binocularly having good quality images reconstructed in full FoV of the display.

78 citations

Journal ArticleDOI
TL;DR: A novel digital holographic algorithm, correcting optical system imaging, is developed that uses plane wave spectrum decomposition of optical field for solving diffraction problem between parallel and tilted planes and enabling correction of imaging system aberrations.
Abstract: In the paper the optical diffraction tomographic system for reconstruction of the internal refractive index distribution in optical fiber utilizing grating Mach-Zehnder interferometer configuration is explored. The setup applies afocal imaging. Conventional grating application gives, however, highly aberrated object beam producing incorrect refractive-index reconstructions. The grating inherent aberrations are characterized, its influence on both image projections and refractive index reconstructions is presented. To remove aberrations and enable tomographic reconstruction a novel digital holographic algorithm, correcting optical system imaging, is developed. The algorithm uses plane wave spectrum decomposition of optical field for solving diffraction problem between parallel and tilted planes and enabling correction of imaging system aberrations. The algorithm concept was successfully proved in simulations and the experiment.

71 citations

Journal ArticleDOI
TL;DR: In this work, new criteria on sampling requirements are derived using the Wigner distribution using the modified AS algorithm to enable an accurate and efficient field computation for cases where the conventional AS method cannot be implemented.
Abstract: The angular spectrum (AS) method is a popular solution to the Helmholtz Equation without the use of approximations. In this work, new criteria on sampling requirements are derived using the Wigner distribution (WD). It is shown that for the case of high numerical aperture the conventional AS method requires a very large amount of zero-padding, making it impractical due to requirements on memory and computational effort. This work proposes the use of a modified AS algorithm that evaluates only non-zero components of the field. The results obtained from the WD combined with the modified AS algorithm enable an accurate and efficient field computation for cases where the conventional AS method cannot be implemented.

67 citations


Cited by
More filters
Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal Article
J. Walkup1
TL;DR: Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.
Abstract: Course Description This is an advanced course in which we explore the field of Statistical Optics. Topics covered include such subjects as the statistical properties of natural (thermal) and laser light, spatial and temporal coherence, effects of partial coherence on optical imaging instruments, effects on imaging due to randomly inhomogeneous media, and a statistical treatment of the detection of light. Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.

1,364 citations

Journal ArticleDOI
TL;DR: Huang et al. as mentioned in this paper developed ultrathin plasmonic metasurfaces to provide 3D optical holographic image reconstruction in the visible and near-infrared regions for circularly polarized light.
Abstract: Holographic techniques allow for the construction of 3D images by controlling the wave front of light beams. Huang et al. develop ultrathin plasmonic metasurfaces to provide 3D optical holographic image reconstruction in the visible and near-infrared regions for circularly polarized light.

1,129 citations

Journal ArticleDOI
TL;DR: Digital holography is an emerging field of new paradigm in general imaging applications as discussed by the authors, and a review of a subset of the research and development activities in digital holographic microscopy techniques and applications is presented.
Abstract: Digital holography is an emerging field of new paradigm in general imaging applications. We present a review of a subset of the research and development activities in digital holography, with emphasis on microscopy techniques and applications. First, the basic results from the general theory of holography, based on the scalar diffraction theory, are summarized, and a general description of the digital holographic microscopy process is given, including quantitative phase microscopy. Several numerical diffraction methods are described and compared, and a number of representative configurations used in digital holography are described, including off-axis Fresnel, Fourier, image plane, in-line, Gabor, and phase-shifting digital holographies. Then we survey numerical techniques that give rise to unique capabilities of digital holography, including suppression of dc and twin image terms, pixel resolution control, optical phase unwrapping, aberration compensation, and others. A survey is also given of representative application areas, including biomedical microscopy, particle field holography, micrometrology, and holographic tomography, as well as some of the special techniques, such as holography of total internal reflection, optical scanning holography, digital interference holography, and heterodyne holography. The review is intended for students and new researchers interested in developing new techniques and exploring new applications of digital holography.

672 citations