scispace - formally typeset
Search or ask a question
Author

Tomasz Pawlowski

Bio: Tomasz Pawlowski is an academic researcher from University of Warsaw. The author has contributed to research in topics: Loop quantum cosmology & Quantum cosmology. The author has an hindex of 28, co-authored 44 publications receiving 4735 citations. Previous affiliations of Tomasz Pawlowski include Max Planck Society & Polish Academy of Sciences.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an improved Hamiltonian constraint operator is introduced in loop quantum cosmology for the isotropic model with a massless scalar field and the big bang is replaced by a quantum bounce.
Abstract: An improved Hamiltonian constraint operator is introduced in loop quantum cosmology. Quantum dynamics of the spatially flat, isotropic model with a massless scalar field is then studied in detail using analytical and numerical methods. The scalar field continues to serve as ''emergent time'', the big bang is again replaced by a quantum bounce, and quantum evolution remains deterministic across the deep Planck regime. However, while with the Hamiltonian constraint used so far in loop quantum cosmology the quantum bounce can occur even at low matter densities, with the new Hamiltonian constraint it occurs only at a Planck-scale density. Thus, the new quantum dynamics retains the attractive features of current evolutions in loop quantum cosmology but, at the same time, cures their main weakness.

1,171 citations

Journal ArticleDOI
TL;DR: The known results on the resolution of the big-bang singularity in loop quantum cosmology are significantly extended, and unlike in other approaches the quantum evolution is deterministic across the deep Planck regime.
Abstract: Some long-standing issues concerning the quantum nature of the big bang are resolved in the context of homogeneous isotropic models with a scalar field. Specifically, the known results on the resolution of the big-bang singularity in loop quantum cosmology are significantly extended as follows: (i) the scalar field is shown to serve as an internal clock, thereby providing a detailed realization of the ``emergent time'' idea; (ii) the physical Hilbert space, Dirac observables, and semiclassical states are constructed rigorously; (iii) the Hamiltonian constraint is solved numerically to show that the big bang is replaced by a big bounce. Thanks to the nonperturbative, background independent methods, unlike in other approaches the quantum evolution is deterministic across the deep Planck regime.

820 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed analytical and numerical methods to analyze the quantum nature of the big bang in the setting of loop quantum cosmology and provided a conceptual framework and technical tools which can be used in more general models.
Abstract: Analytical and numerical methods are developed to analyze the quantum nature of the big bang in the setting of loop quantum cosmology. They enable one to explore the effects of quantum geometry both on the gravitational and matter sectors and significantly extend the known results on the resolution of the big bang singularity. Specifically, the following results are established for the homogeneous isotropic model with a massless scalar field: (i) the scalar field is shown to serve as an internal clock, thereby providing a detailed realization of the 'emergent time' idea; (ii) the physical Hilbert space, Dirac observables, and semiclassical states are constructed rigorously; (iii) the Hamiltonian constraint is solved numerically to show that the big bang is replaced by a big bounce. Thanks to the nonperturbative, background independent methods, unlike in other approaches the quantum evolution is deterministic across the deep Planck regime. Our constructions also provide a conceptual framework and technical tools which can be used in more general models. In this sense, they provide foundations for analyzing physical issues associated with the Planck regime of loop quantum cosmology as a whole.

653 citations

Journal ArticleDOI
TL;DR: In this article, the closed, $k=1, FRW model coupled with a massless scalar field is investigated in the framework of loop quantum cosmology using analytical and numerical methods.
Abstract: The closed, $k=1$, FRW model coupled to a massless scalar field is investigated in the framework of loop quantum cosmology using analytical and numerical methods. As in the $k=0$ case, the scalar field can be again used as emergent time to construct the physical Hilbert space and introduce Dirac observables. The resulting framework is then used to address a major challenge of quantum cosmology: resolving the big-bang singularity while retaining agreement with general relativity at large scales. It is shown that the framework fulfills this task. In particular, for states which are semiclassical at some late time, the big bang is replaced by a quantum bounce and a recollapse occurs at the value of the scale factor predicted by classical general relativity. Thus, the ``difficulties'' pointed out by Green and Unruh in the $k=1$ case do not arise in a more systematic treatment. As in $k=0$ models, quantum dynamics is deterministic across the deep Planck regime. However, because it also retains the classical recollapse, in contrast to the $k=0$ case one is now led to a cyclic model. Finally, we clarify some issues raised by Laguna's recent work addressed to computational physicists.

371 citations

Journal ArticleDOI
TL;DR: A nonperturbative quantization of general relativity coupled to dust, leading to a physical Hamiltonian with spatial diffeomorphism symmetry that provides a complete theory of quantum gravity and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach.
Abstract: We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach.

181 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors systematically review some standard issues and also the latest developments of modified gravity in cosmology, emphasizing on inflation, bouncing cosmology and late-time acceleration era.

1,950 citations

Journal ArticleDOI
TL;DR: Loop quantum gravity as discussed by the authors is a background-independent, non-perturbative approach to the problem of unification of general relativity and quantum physics, based on a quantum theory of geometry.
Abstract: The goal of this review is to present an introduction to loop quantum gravity—a background-independent, non-perturbative approach to the problem of unification of general relativity and quantum physics, based on a quantum theory of geometry. Our presentation is pedagogical. Thus, in addition to providing a bird's eye view of the present status of the subject, the review should also serve as a vehicle to enter the field and explore it in detail. To aid non-experts, very little is assumed beyond elements of general relativity, gauge theories and quantum field theory. While the review is essentially self-contained, the emphasis is on communicating the underlying ideas and the significance of results rather than on presenting systematic derivations and detailed proofs. (These can be found in the listed references.) The subject can be approached in different ways. We have chosen one which is deeply rooted in well-established physics and also has sufficient mathematical precision to ensure that there are no hidden infinities. In order to keep the review to a reasonable size, and to avoid overwhelming non-experts, we have had to leave out several interesting topics, results and viewpoints; this is meant to be an introduction to the subject rather than an exhaustive review of it.

1,804 citations

01 Jan 2016
TL;DR: The methods of modern mathematical physics is universally compatible with any devices to read and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for reading methods of modern mathematical physics. Maybe you have knowledge that, people have look numerous times for their favorite novels like this methods of modern mathematical physics, but end up in harmful downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they are facing with some infectious virus inside their desktop computer. methods of modern mathematical physics is available in our digital library an online access to it is set as public so you can download it instantly. Our books collection saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the methods of modern mathematical physics is universally compatible with any devices to read.

1,536 citations

Journal ArticleDOI
TL;DR: In this article, an improved Hamiltonian constraint operator is introduced in loop quantum cosmology for the isotropic model with a massless scalar field and the big bang is replaced by a quantum bounce.
Abstract: An improved Hamiltonian constraint operator is introduced in loop quantum cosmology. Quantum dynamics of the spatially flat, isotropic model with a massless scalar field is then studied in detail using analytical and numerical methods. The scalar field continues to serve as ''emergent time'', the big bang is again replaced by a quantum bounce, and quantum evolution remains deterministic across the deep Planck regime. However, while with the Hamiltonian constraint used so far in loop quantum cosmology the quantum bounce can occur even at low matter densities, with the new Hamiltonian constraint it occurs only at a Planck-scale density. Thus, the new quantum dynamics retains the attractive features of current evolutions in loop quantum cosmology but, at the same time, cures their main weakness.

1,171 citations

Journal ArticleDOI
TL;DR: Loop quantum cosmology (LQC) as mentioned in this paper is the result of applying principles of loop quantum gravity to cosmological settings, where quantum geometry creates a brand new repulsive force which is totally negligible at low spacetime curvature but rises very rapidly in the Planck regime, overwhelming the classical gravitational attraction.
Abstract: Loop quantum cosmology (LQC) is the result of applying principles of loop quantum gravity (LQG) to cosmological settings. The distinguishing feature of LQC is the prominent role played by the quantum geometry effects of LQG. In particular, quantum geometry creates a brand new repulsive force which is totally negligible at low spacetime curvature but rises very rapidly in the Planck regime, overwhelming the classical gravitational attraction. In cosmological models, while Einstein's equations hold to an excellent degree of approximation at low curvature, they undergo major modifications in the Planck regime: for matter satisfying the usual energy conditions, any time a curvature invariant grows to the Planck scale, quantum geometry effects dilute it, thereby resolving singularities of general relativity. Quantum geometry corrections become more sophisticated as the models become richer. In particular, in anisotropic models, there are significant changes in the dynamics of shear potentials which tame their singular behavior in striking contrast to older results on anisotropies in bouncing models. Once singularities are resolved, the conceptual paradigm of cosmology changes and one has to revisit many of the standard issues—e.g. the 'horizon problem'—from a new perspective. Such conceptual issues as well as potential observational consequences of the new Planck scale physics are being explored, especially within the inflationary paradigm. These considerations have given rise to a burst of activity in LQC in recent years, with contributions from quantum gravity experts, mathematical physicists and cosmologists. The goal of this review is to provide an overview of the current state of the art in LQC for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general and cosmologists who wish to apply LQC to probe modifications in the standard paradigm of the early universe. In this review, effort has been made to streamline the material so that each of these communities can read only the sections they are most interested in, without loss of continuity.

1,162 citations